Properties

Label 2-3800-1.1-c1-0-83
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.84·3-s + 0.145·7-s + 5.10·9-s − 5.71·11-s − 5.24·13-s − 7.15·17-s + 19-s + 0.412·21-s + 0.622·23-s + 6.00·27-s − 5.46·29-s − 3.77·31-s − 16.2·33-s + 5.03·37-s − 14.9·39-s + 5.77·41-s + 3.32·43-s − 5.85·47-s − 6.97·49-s − 20.3·51-s + 6.97·53-s + 2.84·57-s + 9.09·59-s − 8.16·61-s + 0.740·63-s − 13.6·67-s + 1.77·69-s + ⋯
L(s)  = 1  + 1.64·3-s + 0.0548·7-s + 1.70·9-s − 1.72·11-s − 1.45·13-s − 1.73·17-s + 0.229·19-s + 0.0901·21-s + 0.129·23-s + 1.15·27-s − 1.01·29-s − 0.678·31-s − 2.83·33-s + 0.827·37-s − 2.39·39-s + 0.901·41-s + 0.506·43-s − 0.854·47-s − 0.996·49-s − 2.85·51-s + 0.957·53-s + 0.377·57-s + 1.18·59-s − 1.04·61-s + 0.0933·63-s − 1.66·67-s + 0.213·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 2.84T + 3T^{2} \)
7 \( 1 - 0.145T + 7T^{2} \)
11 \( 1 + 5.71T + 11T^{2} \)
13 \( 1 + 5.24T + 13T^{2} \)
17 \( 1 + 7.15T + 17T^{2} \)
23 \( 1 - 0.622T + 23T^{2} \)
29 \( 1 + 5.46T + 29T^{2} \)
31 \( 1 + 3.77T + 31T^{2} \)
37 \( 1 - 5.03T + 37T^{2} \)
41 \( 1 - 5.77T + 41T^{2} \)
43 \( 1 - 3.32T + 43T^{2} \)
47 \( 1 + 5.85T + 47T^{2} \)
53 \( 1 - 6.97T + 53T^{2} \)
59 \( 1 - 9.09T + 59T^{2} \)
61 \( 1 + 8.16T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 - 2.41T + 71T^{2} \)
73 \( 1 + 7.44T + 73T^{2} \)
79 \( 1 + 9.69T + 79T^{2} \)
83 \( 1 - 2.17T + 83T^{2} \)
89 \( 1 - 3.90T + 89T^{2} \)
97 \( 1 + 4.98T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.120973690922000417254504303532, −7.44843592533865202640194689029, −7.16766416883981697828943950796, −5.84532888188395806647531687534, −4.86137399173361902895522723888, −4.28597972795277125188036131091, −3.14691357573419607020384144070, −2.49292933297905422831706578576, −1.99596305248834091842092385569, 0, 1.99596305248834091842092385569, 2.49292933297905422831706578576, 3.14691357573419607020384144070, 4.28597972795277125188036131091, 4.86137399173361902895522723888, 5.84532888188395806647531687534, 7.16766416883981697828943950796, 7.44843592533865202640194689029, 8.120973690922000417254504303532

Graph of the $Z$-function along the critical line