L(s) = 1 | + (−0.766 + 0.642i)2-s + (−1.76 − 0.642i)3-s + (0.173 − 0.984i)4-s + (1.76 − 0.642i)6-s + (0.500 + 0.866i)8-s + (1.93 + 1.62i)9-s + (−0.766 − 1.32i)11-s + (−0.939 + 1.62i)12-s + (−0.939 − 0.342i)16-s + (0.766 − 0.642i)17-s − 2.53·18-s + (0.766 + 0.642i)19-s + (1.43 + 0.524i)22-s + (−0.326 − 1.85i)24-s + (−1.43 − 2.49i)27-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (−1.76 − 0.642i)3-s + (0.173 − 0.984i)4-s + (1.76 − 0.642i)6-s + (0.500 + 0.866i)8-s + (1.93 + 1.62i)9-s + (−0.766 − 1.32i)11-s + (−0.939 + 1.62i)12-s + (−0.939 − 0.342i)16-s + (0.766 − 0.642i)17-s − 2.53·18-s + (0.766 + 0.642i)19-s + (1.43 + 0.524i)22-s + (−0.326 − 1.85i)24-s + (−1.43 − 2.49i)27-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.756+0.654i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.756+0.654i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.756+0.654i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 0.756+0.654i)
|
Particular Values
L(21) |
≈ |
0.4281996247 |
L(21) |
≈ |
0.4281996247 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.766−0.642i)T |
| 5 | 1 |
| 19 | 1+(−0.766−0.642i)T |
good | 3 | 1+(1.76+0.642i)T+(0.766+0.642i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.766+1.32i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.766+0.642i)T2 |
| 17 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 23 | 1+(0.939+0.342i)T2 |
| 29 | 1+(−0.173−0.984i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−1.76−0.642i)T+(0.766+0.642i)T2 |
| 43 | 1+(−0.173−0.984i)T+(−0.939+0.342i)T2 |
| 47 | 1+(−0.173−0.984i)T2 |
| 53 | 1+(0.939+0.342i)T2 |
| 59 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 61 | 1+(0.939+0.342i)T2 |
| 67 | 1+(−1.43−1.20i)T+(0.173+0.984i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(−0.326−0.118i)T+(0.766+0.642i)T2 |
| 79 | 1+(−0.766−0.642i)T2 |
| 83 | 1+(−0.766+1.32i)T+(−0.5−0.866i)T2 |
| 89 | 1+(1.87−0.684i)T+(0.766−0.642i)T2 |
| 97 | 1+(0.266−0.223i)T+(0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.228451872926728703131366952024, −7.75634111008150022354005513035, −7.12175309694353353258385607611, −6.30588558214913846554464939925, −5.65097076719790309372732781847, −5.42904103617006082234934810520, −4.45452884919507975297115695901, −2.85705350107394372737111342598, −1.42759487613721642894819643118, −0.61065719934470144284918960642,
0.856843530204907589373333334017, 2.05552982932751691187882542096, 3.37659520587155956345329470465, 4.30105730120281373904677862784, 4.92410408957706829471385376034, 5.69689125861332785021017368765, 6.60599725274519839595105741581, 7.32679272453921567472527231223, 7.896707227416460516309998723906, 9.189671902870959749031167309800