L(s) = 1 | + (−0.766 + 0.642i)2-s + (−1.76 − 0.642i)3-s + (0.173 − 0.984i)4-s + (1.76 − 0.642i)6-s + (0.500 + 0.866i)8-s + (1.93 + 1.62i)9-s + (−0.766 − 1.32i)11-s + (−0.939 + 1.62i)12-s + (−0.939 − 0.342i)16-s + (0.766 − 0.642i)17-s − 2.53·18-s + (0.766 + 0.642i)19-s + (1.43 + 0.524i)22-s + (−0.326 − 1.85i)24-s + (−1.43 − 2.49i)27-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (−1.76 − 0.642i)3-s + (0.173 − 0.984i)4-s + (1.76 − 0.642i)6-s + (0.500 + 0.866i)8-s + (1.93 + 1.62i)9-s + (−0.766 − 1.32i)11-s + (−0.939 + 1.62i)12-s + (−0.939 − 0.342i)16-s + (0.766 − 0.642i)17-s − 2.53·18-s + (0.766 + 0.642i)19-s + (1.43 + 0.524i)22-s + (−0.326 − 1.85i)24-s + (−1.43 − 2.49i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.756 + 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4281996247\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4281996247\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 - 0.642i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-0.766 - 0.642i)T \) |
good | 3 | \( 1 + (1.76 + 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-1.76 - 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-1.43 - 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.326 - 0.118i)T + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (1.87 - 0.684i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (0.266 - 0.223i)T + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.228451872926728703131366952024, −7.75634111008150022354005513035, −7.12175309694353353258385607611, −6.30588558214913846554464939925, −5.65097076719790309372732781847, −5.42904103617006082234934810520, −4.45452884919507975297115695901, −2.85705350107394372737111342598, −1.42759487613721642894819643118, −0.61065719934470144284918960642,
0.856843530204907589373333334017, 2.05552982932751691187882542096, 3.37659520587155956345329470465, 4.30105730120281373904677862784, 4.92410408957706829471385376034, 5.69689125861332785021017368765, 6.60599725274519839595105741581, 7.32679272453921567472527231223, 7.896707227416460516309998723906, 9.189671902870959749031167309800