L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s + 8-s + 9-s + 10-s − 11-s − 12-s + 13-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s + 20-s − 22-s − 6·23-s − 24-s − 4·25-s + 26-s − 27-s + 3·29-s − 30-s + 11·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s − 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.213·22-s − 1.25·23-s − 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.192·27-s + 0.557·29-s − 0.182·30-s + 1.97·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(3822s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3822s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.898650850 |
L(21) |
≈ |
2.898650850 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 7 | 1 |
| 13 | 1−T |
good | 5 | 1−T+pT2 |
| 11 | 1+T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1−11T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1+12T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−8T+pT2 |
| 53 | 1+5T+pT2 |
| 59 | 1−5T+pT2 |
| 61 | 1+12T+pT2 |
| 67 | 1−16T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−7T+pT2 |
| 83 | 1−17T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1+13T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.079464557742516455257811209921, −7.88726865992802290068560784929, −6.67977304881098183980770883507, −6.20968245118849588213967385130, −5.41538490462143317344710809691, −4.94809026004257678850587851082, −3.88685634038772924603182367397, −3.12860410237719280517625053481, −2.03413591199556524513892954961, −0.950220163938610621111634211423,
0.950220163938610621111634211423, 2.03413591199556524513892954961, 3.12860410237719280517625053481, 3.88685634038772924603182367397, 4.94809026004257678850587851082, 5.41538490462143317344710809691, 6.20968245118849588213967385130, 6.67977304881098183980770883507, 7.88726865992802290068560784929, 8.079464557742516455257811209921