L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 11-s + 12-s − 13-s + 15-s + 16-s − 5·17-s − 18-s + 19-s + 20-s − 22-s − 5·23-s − 24-s − 4·25-s + 26-s + 27-s − 3·29-s − 30-s + 2·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.21·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s − 0.213·22-s − 1.04·23-s − 0.204·24-s − 4/5·25-s + 0.196·26-s + 0.192·27-s − 0.557·29-s − 0.182·30-s + 0.359·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(3822s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3822s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 7 | 1 |
| 13 | 1+T |
good | 5 | 1−T+pT2 |
| 11 | 1−T+pT2 |
| 17 | 1+5T+pT2 |
| 19 | 1−T+pT2 |
| 23 | 1+5T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1+11T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+12T+pT2 |
| 53 | 1−10T+pT2 |
| 59 | 1+14T+pT2 |
| 61 | 1+T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+2T+pT2 |
| 73 | 1−T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1−2T+pT2 |
| 89 | 1−12T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.229624320832690142984378383684, −7.52816032351613775475960337785, −6.75482774895766807647838084195, −6.13224739380455376431007248026, −5.15918727573138497040371551761, −4.16478786226631774399464294051, −3.28562902398430010868422011747, −2.21183611182006506064580779862, −1.64319459172741036695391272168, 0,
1.64319459172741036695391272168, 2.21183611182006506064580779862, 3.28562902398430010868422011747, 4.16478786226631774399464294051, 5.15918727573138497040371551761, 6.13224739380455376431007248026, 6.75482774895766807647838084195, 7.52816032351613775475960337785, 8.229624320832690142984378383684