L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 11-s + 12-s − 13-s + 15-s + 16-s − 5·17-s − 18-s + 19-s + 20-s − 22-s − 5·23-s − 24-s − 4·25-s + 26-s + 27-s − 3·29-s − 30-s + 2·31-s − 32-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.21·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s − 0.213·22-s − 1.04·23-s − 0.204·24-s − 4/5·25-s + 0.196·26-s + 0.192·27-s − 0.557·29-s − 0.182·30-s + 0.359·31-s − 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 + 5 T + p T^{2} \) |
| 19 | \( 1 - T + p T^{2} \) |
| 23 | \( 1 + 5 T + p T^{2} \) |
| 29 | \( 1 + 3 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 + 11 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + 2 T + p T^{2} \) |
| 73 | \( 1 - T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 2 T + p T^{2} \) |
| 89 | \( 1 - 12 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.229624320832690142984378383684, −7.52816032351613775475960337785, −6.75482774895766807647838084195, −6.13224739380455376431007248026, −5.15918727573138497040371551761, −4.16478786226631774399464294051, −3.28562902398430010868422011747, −2.21183611182006506064580779862, −1.64319459172741036695391272168, 0,
1.64319459172741036695391272168, 2.21183611182006506064580779862, 3.28562902398430010868422011747, 4.16478786226631774399464294051, 5.15918727573138497040371551761, 6.13224739380455376431007248026, 6.75482774895766807647838084195, 7.52816032351613775475960337785, 8.229624320832690142984378383684