L(s) = 1 | + (−1.08 + 0.908i)2-s + (0.881 − 0.471i)3-s + (0.349 − 1.96i)4-s + (1.51 + 1.84i)5-s + (−0.527 + 1.31i)6-s + (1.69 − 1.13i)7-s + (1.41 + 2.45i)8-s + (0.555 − 0.831i)9-s + (−3.31 − 0.623i)10-s + (1.92 − 0.585i)11-s + (−0.620 − 1.90i)12-s + (−1.76 − 1.44i)13-s + (−0.809 + 2.77i)14-s + (2.20 + 0.912i)15-s + (−3.75 − 1.37i)16-s + (−1.20 + 0.497i)17-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)2-s + (0.509 − 0.272i)3-s + (0.174 − 0.984i)4-s + (0.676 + 0.824i)5-s + (−0.215 + 0.535i)6-s + (0.641 − 0.428i)7-s + (0.498 + 0.866i)8-s + (0.185 − 0.277i)9-s + (−1.04 − 0.197i)10-s + (0.581 − 0.176i)11-s + (−0.179 − 0.548i)12-s + (−0.488 − 0.401i)13-s + (−0.216 + 0.740i)14-s + (0.568 + 0.235i)15-s + (−0.939 − 0.343i)16-s + (−0.291 + 0.120i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.870−0.492i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.870−0.492i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.870−0.492i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.870−0.492i)
|
Particular Values
L(1) |
≈ |
1.29679+0.341297i |
L(21) |
≈ |
1.29679+0.341297i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.08−0.908i)T |
| 3 | 1+(−0.881+0.471i)T |
good | 5 | 1+(−1.51−1.84i)T+(−0.975+4.90i)T2 |
| 7 | 1+(−1.69+1.13i)T+(2.67−6.46i)T2 |
| 11 | 1+(−1.92+0.585i)T+(9.14−6.11i)T2 |
| 13 | 1+(1.76+1.44i)T+(2.53+12.7i)T2 |
| 17 | 1+(1.20−0.497i)T+(12.0−12.0i)T2 |
| 19 | 1+(−0.0663−0.674i)T+(−18.6+3.70i)T2 |
| 23 | 1+(−4.83+0.962i)T+(21.2−8.80i)T2 |
| 29 | 1+(1.28−4.23i)T+(−24.1−16.1i)T2 |
| 31 | 1+(−3.94−3.94i)T+31iT2 |
| 37 | 1+(−1.45−0.142i)T+(36.2+7.21i)T2 |
| 41 | 1+(1.24+6.25i)T+(−37.8+15.6i)T2 |
| 43 | 1+(3.63+1.94i)T+(23.8+35.7i)T2 |
| 47 | 1+(−3.99−9.64i)T+(−33.2+33.2i)T2 |
| 53 | 1+(−1.42−4.70i)T+(−44.0+29.4i)T2 |
| 59 | 1+(6.73−5.52i)T+(11.5−57.8i)T2 |
| 61 | 1+(3.92+7.33i)T+(−33.8+50.7i)T2 |
| 67 | 1+(−2.13−4.00i)T+(−37.2+55.7i)T2 |
| 71 | 1+(8.27+12.3i)T+(−27.1+65.5i)T2 |
| 73 | 1+(6.01+4.02i)T+(27.9+67.4i)T2 |
| 79 | 1+(−2.42+5.85i)T+(−55.8−55.8i)T2 |
| 83 | 1+(−4.16+0.409i)T+(81.4−16.1i)T2 |
| 89 | 1+(10.0+2.00i)T+(82.2+34.0i)T2 |
| 97 | 1+(9.11+9.11i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.92520572451154792807093349213, −10.47993662226547525162508363219, −9.427171034747286371743001050984, −8.643853726747585331095823774330, −7.59237242254582334927247543761, −6.89656447252691753048375116774, −6.00490625267053477440643553331, −4.69591440042243274562814112047, −2.85287051553552300000232685140, −1.46903793636015915168353248998,
1.48345669559854063054370597819, 2.58117435809163873297646277199, 4.16890328982567681333491604410, 5.16128707621665696781467200875, 6.75667935636142361170451516771, 7.940662310780939395228253269064, 8.795020550191700814754991516281, 9.376732415765089984485261301555, 10.05149091346186008132947851139, 11.32894834101758905661544787336