L(s) = 1 | + (0.827 − 1.14i)2-s + (0.881 − 0.471i)3-s + (−0.632 − 1.89i)4-s + (2.75 + 3.35i)5-s + (0.188 − 1.40i)6-s + (−1.44 + 0.963i)7-s + (−2.69 − 0.844i)8-s + (0.555 − 0.831i)9-s + (6.12 − 0.384i)10-s + (4.36 − 1.32i)11-s + (−1.45 − 1.37i)12-s + (−0.620 − 0.509i)13-s + (−0.0871 + 2.45i)14-s + (4.01 + 1.66i)15-s + (−3.20 + 2.39i)16-s + (2.30 − 0.956i)17-s + ⋯ |
L(s) = 1 | + (0.584 − 0.811i)2-s + (0.509 − 0.272i)3-s + (−0.316 − 0.948i)4-s + (1.23 + 1.50i)5-s + (0.0769 − 0.572i)6-s + (−0.544 + 0.364i)7-s + (−0.954 − 0.298i)8-s + (0.185 − 0.277i)9-s + (1.93 − 0.121i)10-s + (1.31 − 0.399i)11-s + (−0.419 − 0.397i)12-s + (−0.172 − 0.141i)13-s + (−0.0233 + 0.654i)14-s + (1.03 + 0.428i)15-s + (−0.800 + 0.599i)16-s + (0.560 − 0.232i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.631+0.775i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.631+0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.631+0.775i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.631+0.775i)
|
Particular Values
L(1) |
≈ |
2.13190−1.01292i |
L(21) |
≈ |
2.13190−1.01292i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.827+1.14i)T |
| 3 | 1+(−0.881+0.471i)T |
good | 5 | 1+(−2.75−3.35i)T+(−0.975+4.90i)T2 |
| 7 | 1+(1.44−0.963i)T+(2.67−6.46i)T2 |
| 11 | 1+(−4.36+1.32i)T+(9.14−6.11i)T2 |
| 13 | 1+(0.620+0.509i)T+(2.53+12.7i)T2 |
| 17 | 1+(−2.30+0.956i)T+(12.0−12.0i)T2 |
| 19 | 1+(0.650+6.60i)T+(−18.6+3.70i)T2 |
| 23 | 1+(8.19−1.63i)T+(21.2−8.80i)T2 |
| 29 | 1+(1.28−4.23i)T+(−24.1−16.1i)T2 |
| 31 | 1+(−0.608−0.608i)T+31iT2 |
| 37 | 1+(5.62+0.553i)T+(36.2+7.21i)T2 |
| 41 | 1+(0.680+3.42i)T+(−37.8+15.6i)T2 |
| 43 | 1+(−1.97−1.05i)T+(23.8+35.7i)T2 |
| 47 | 1+(1.97+4.77i)T+(−33.2+33.2i)T2 |
| 53 | 1+(3.50+11.5i)T+(−44.0+29.4i)T2 |
| 59 | 1+(0.265−0.218i)T+(11.5−57.8i)T2 |
| 61 | 1+(−5.70−10.6i)T+(−33.8+50.7i)T2 |
| 67 | 1+(−2.13−3.99i)T+(−37.2+55.7i)T2 |
| 71 | 1+(1.73+2.59i)T+(−27.1+65.5i)T2 |
| 73 | 1+(3.87+2.58i)T+(27.9+67.4i)T2 |
| 79 | 1+(1.12−2.72i)T+(−55.8−55.8i)T2 |
| 83 | 1+(3.76−0.370i)T+(81.4−16.1i)T2 |
| 89 | 1+(−8.81−1.75i)T+(82.2+34.0i)T2 |
| 97 | 1+(−0.442−0.442i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.25422495181704319376680497822, −10.25992566173305260329383173944, −9.614645777980867990623617005355, −8.908857728976771633082533844814, −7.00878672754113519024063429281, −6.38900732553524143584335214147, −5.51255119311623678734486702087, −3.67179583447648556678122991788, −2.86358009227586454001273466622, −1.85209650398546405236607924791,
1.82760940291487278531100829488, 3.78834890896637205637160571599, 4.53258547843263906922569121397, 5.78856726868836919874296266172, 6.38258498626172312885922292287, 7.87308436713083914146483051445, 8.644881762761940981761216626260, 9.612263467989309009561866324283, 9.952229940815430873788554411728, 12.10514503037445088491348565762