L(s) = 1 | + (1.26 − 0.640i)2-s + (−0.881 + 0.471i)3-s + (1.17 − 1.61i)4-s + (−0.276 − 0.336i)5-s + (−0.810 + 1.15i)6-s + (0.338 − 0.226i)7-s + (0.453 − 2.79i)8-s + (0.555 − 0.831i)9-s + (−0.563 − 0.247i)10-s + (5.34 − 1.62i)11-s + (−0.279 + 1.98i)12-s + (−0.687 − 0.563i)13-s + (0.282 − 0.502i)14-s + (0.402 + 0.166i)15-s + (−1.21 − 3.81i)16-s + (−2.42 + 1.00i)17-s + ⋯ |
L(s) = 1 | + (0.891 − 0.452i)2-s + (−0.509 + 0.272i)3-s + (0.589 − 0.807i)4-s + (−0.123 − 0.150i)5-s + (−0.330 + 0.473i)6-s + (0.128 − 0.0855i)7-s + (0.160 − 0.987i)8-s + (0.185 − 0.277i)9-s + (−0.178 − 0.0782i)10-s + (1.61 − 0.488i)11-s + (−0.0805 + 0.571i)12-s + (−0.190 − 0.156i)13-s + (0.0754 − 0.134i)14-s + (0.103 + 0.0430i)15-s + (−0.304 − 0.952i)16-s + (−0.588 + 0.243i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.472+0.881i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.472+0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.472+0.881i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.472+0.881i)
|
Particular Values
L(1) |
≈ |
1.71768−1.02861i |
L(21) |
≈ |
1.71768−1.02861i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.26+0.640i)T |
| 3 | 1+(0.881−0.471i)T |
good | 5 | 1+(0.276+0.336i)T+(−0.975+4.90i)T2 |
| 7 | 1+(−0.338+0.226i)T+(2.67−6.46i)T2 |
| 11 | 1+(−5.34+1.62i)T+(9.14−6.11i)T2 |
| 13 | 1+(0.687+0.563i)T+(2.53+12.7i)T2 |
| 17 | 1+(2.42−1.00i)T+(12.0−12.0i)T2 |
| 19 | 1+(0.274+2.78i)T+(−18.6+3.70i)T2 |
| 23 | 1+(−2.38+0.473i)T+(21.2−8.80i)T2 |
| 29 | 1+(2.19−7.25i)T+(−24.1−16.1i)T2 |
| 31 | 1+(−6.54−6.54i)T+31iT2 |
| 37 | 1+(8.61+0.848i)T+(36.2+7.21i)T2 |
| 41 | 1+(−1.68−8.49i)T+(−37.8+15.6i)T2 |
| 43 | 1+(3.39+1.81i)T+(23.8+35.7i)T2 |
| 47 | 1+(−2.17−5.24i)T+(−33.2+33.2i)T2 |
| 53 | 1+(−0.0205−0.0676i)T+(−44.0+29.4i)T2 |
| 59 | 1+(2.24−1.83i)T+(11.5−57.8i)T2 |
| 61 | 1+(2.98+5.57i)T+(−33.8+50.7i)T2 |
| 67 | 1+(3.71+6.94i)T+(−37.2+55.7i)T2 |
| 71 | 1+(−5.59−8.37i)T+(−27.1+65.5i)T2 |
| 73 | 1+(−8.63−5.77i)T+(27.9+67.4i)T2 |
| 79 | 1+(1.25−3.04i)T+(−55.8−55.8i)T2 |
| 83 | 1+(0.917−0.0903i)T+(81.4−16.1i)T2 |
| 89 | 1+(6.22+1.23i)T+(82.2+34.0i)T2 |
| 97 | 1+(9.59+9.59i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.22390929343920410955335522145, −10.67255027326099615256093728791, −9.531282133572055418663463732269, −8.625034238772635646626421664175, −6.88018937124325631810482526468, −6.36143777730162562192067743707, −5.06696768377045298196722661284, −4.27975799144668538765972430550, −3.13488094841638045860195362219, −1.27350750702614013575895151030,
1.96869811337174984419513361271, 3.69367293231081711887280676495, 4.61704877775419918456229344541, 5.78657049160035168084792881032, 6.69555536542559108118245202835, 7.33552634347908189459188218084, 8.536654191184328817787588521015, 9.660689785883838190516042194626, 11.00543654857144247144752977629, 11.80535506581929034721007432287