Properties

Label 2-3840-1.1-c1-0-1
Degree $2$
Conductor $3840$
Sign $1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 4.68·7-s + 9-s − 2.29·11-s − 4.97·13-s − 15-s − 2.97·17-s + 2.68·19-s + 4.68·21-s − 2.68·23-s + 25-s − 27-s + 2·29-s − 6.97·31-s + 2.29·33-s − 4.68·35-s − 4.39·37-s + 4.97·39-s + 11.3·41-s − 9.37·43-s + 45-s + 7.27·47-s + 14.9·49-s + 2.97·51-s + 2·53-s − 2.29·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.77·7-s + 0.333·9-s − 0.691·11-s − 1.38·13-s − 0.258·15-s − 0.722·17-s + 0.616·19-s + 1.02·21-s − 0.560·23-s + 0.200·25-s − 0.192·27-s + 0.371·29-s − 1.25·31-s + 0.399·33-s − 0.792·35-s − 0.722·37-s + 0.797·39-s + 1.77·41-s − 1.42·43-s + 0.149·45-s + 1.06·47-s + 2.13·49-s + 0.417·51-s + 0.274·53-s − 0.309·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6222693756\)
\(L(\frac12)\) \(\approx\) \(0.6222693756\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
good7 \( 1 + 4.68T + 7T^{2} \)
11 \( 1 + 2.29T + 11T^{2} \)
13 \( 1 + 4.97T + 13T^{2} \)
17 \( 1 + 2.97T + 17T^{2} \)
19 \( 1 - 2.68T + 19T^{2} \)
23 \( 1 + 2.68T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 6.97T + 31T^{2} \)
37 \( 1 + 4.39T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 + 9.37T + 43T^{2} \)
47 \( 1 - 7.27T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 1.70T + 59T^{2} \)
61 \( 1 - 4.58T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 0.585T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 1.02T + 79T^{2} \)
83 \( 1 + 13.3T + 83T^{2} \)
89 \( 1 + 3.37T + 89T^{2} \)
97 \( 1 + 3.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.630390342237459692406257615233, −7.38972203634515397626425043578, −7.06277198156207755689974452437, −6.20592562068817042967307285068, −5.60713997679657661864174451610, −4.87100626249852007035624277326, −3.83977398129389436157749585977, −2.89107152275067715985896925480, −2.14639701933083279396015740907, −0.43721770791480943591712467496, 0.43721770791480943591712467496, 2.14639701933083279396015740907, 2.89107152275067715985896925480, 3.83977398129389436157749585977, 4.87100626249852007035624277326, 5.60713997679657661864174451610, 6.20592562068817042967307285068, 7.06277198156207755689974452437, 7.38972203634515397626425043578, 8.630390342237459692406257615233

Graph of the $Z$-function along the critical line