Properties

Label 2-3840-1.1-c1-0-20
Degree $2$
Conductor $3840$
Sign $1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s + 6·13-s − 15-s − 2·19-s + 6·23-s + 25-s + 27-s + 6·29-s − 6·37-s + 6·39-s − 6·41-s − 8·43-s − 45-s − 6·47-s − 7·49-s + 6·53-s − 2·57-s + 12·59-s + 12·61-s − 6·65-s − 4·67-s + 6·69-s + 12·71-s − 2·73-s + 75-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s + 1.66·13-s − 0.258·15-s − 0.458·19-s + 1.25·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.986·37-s + 0.960·39-s − 0.937·41-s − 1.21·43-s − 0.149·45-s − 0.875·47-s − 49-s + 0.824·53-s − 0.264·57-s + 1.56·59-s + 1.53·61-s − 0.744·65-s − 0.488·67-s + 0.722·69-s + 1.42·71-s − 0.234·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.405287333\)
\(L(\frac12)\) \(\approx\) \(2.405287333\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 12 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.491558126432897481987602583832, −8.025558724206857712517754972973, −6.82033201421353101559868448454, −6.61458075237655978501027495472, −5.40631980079267041264148366817, −4.63550796724991546581859348625, −3.63216606310010362585347506817, −3.22642268183474511512896931271, −1.97776141782979305959520401409, −0.909537853146744575546185673329, 0.909537853146744575546185673329, 1.97776141782979305959520401409, 3.22642268183474511512896931271, 3.63216606310010362585347506817, 4.63550796724991546581859348625, 5.40631980079267041264148366817, 6.61458075237655978501027495472, 6.82033201421353101559868448454, 8.025558724206857712517754972973, 8.491558126432897481987602583832

Graph of the $Z$-function along the critical line