Properties

Label 2-3840-1.1-c1-0-33
Degree $2$
Conductor $3840$
Sign $-1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 4·7-s + 9-s + 4·11-s − 2·13-s + 15-s + 6·19-s + 4·21-s − 2·23-s + 25-s − 27-s − 10·29-s + 8·31-s − 4·33-s + 4·35-s − 6·37-s + 2·39-s + 2·41-s − 45-s + 10·47-s + 9·49-s + 6·53-s − 4·55-s − 6·57-s − 4·61-s − 4·63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.258·15-s + 1.37·19-s + 0.872·21-s − 0.417·23-s + 1/5·25-s − 0.192·27-s − 1.85·29-s + 1.43·31-s − 0.696·33-s + 0.676·35-s − 0.986·37-s + 0.320·39-s + 0.312·41-s − 0.149·45-s + 1.45·47-s + 9/7·49-s + 0.824·53-s − 0.539·55-s − 0.794·57-s − 0.512·61-s − 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.992883565045267623959574889367, −7.14171916920406481852093221362, −6.74376258764267807585390205531, −5.92663151211549582068628632033, −5.25940207031282311952344051521, −4.08213967612376426073032732169, −3.61521951901471238783945328372, −2.62673584549065035587996041061, −1.17018441156581271676063282459, 0, 1.17018441156581271676063282459, 2.62673584549065035587996041061, 3.61521951901471238783945328372, 4.08213967612376426073032732169, 5.25940207031282311952344051521, 5.92663151211549582068628632033, 6.74376258764267807585390205531, 7.14171916920406481852093221362, 7.992883565045267623959574889367

Graph of the $Z$-function along the critical line