L(s) = 1 | − 3-s − 5-s − 4·7-s + 9-s + 4·11-s − 2·13-s + 15-s + 6·19-s + 4·21-s − 2·23-s + 25-s − 27-s − 10·29-s + 8·31-s − 4·33-s + 4·35-s − 6·37-s + 2·39-s + 2·41-s − 45-s + 10·47-s + 9·49-s + 6·53-s − 4·55-s − 6·57-s − 4·61-s − 4·63-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.258·15-s + 1.37·19-s + 0.872·21-s − 0.417·23-s + 1/5·25-s − 0.192·27-s − 1.85·29-s + 1.43·31-s − 0.696·33-s + 0.676·35-s − 0.986·37-s + 0.320·39-s + 0.312·41-s − 0.149·45-s + 1.45·47-s + 9/7·49-s + 0.824·53-s − 0.539·55-s − 0.794·57-s − 0.512·61-s − 0.503·63-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3840s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1+T |
good | 7 | 1+4T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1+10T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+pT2 |
| 47 | 1−10T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+4T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+18T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.992883565045267623959574889367, −7.14171916920406481852093221362, −6.74376258764267807585390205531, −5.92663151211549582068628632033, −5.25940207031282311952344051521, −4.08213967612376426073032732169, −3.61521951901471238783945328372, −2.62673584549065035587996041061, −1.17018441156581271676063282459, 0,
1.17018441156581271676063282459, 2.62673584549065035587996041061, 3.61521951901471238783945328372, 4.08213967612376426073032732169, 5.25940207031282311952344051521, 5.92663151211549582068628632033, 6.74376258764267807585390205531, 7.14171916920406481852093221362, 7.992883565045267623959574889367