L(s) = 1 | + (−0.415 − 0.909i)2-s + (0.959 − 0.281i)3-s + (−0.654 + 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.142 − 0.989i)7-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)9-s + (−0.415 + 0.909i)12-s + (−0.118 + 0.822i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (1.10 + 1.27i)17-s + (−0.841 − 0.540i)18-s + (−0.415 − 0.909i)21-s + (0.959 + 0.281i)23-s + 0.999·24-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.909i)2-s + (0.959 − 0.281i)3-s + (−0.654 + 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.142 − 0.989i)7-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)9-s + (−0.415 + 0.909i)12-s + (−0.118 + 0.822i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (1.10 + 1.27i)17-s + (−0.841 − 0.540i)18-s + (−0.415 − 0.909i)21-s + (0.959 + 0.281i)23-s + 0.999·24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.117 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.117 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.476205546\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.476205546\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.415 + 0.909i)T \) |
| 3 | \( 1 + (-0.959 + 0.281i)T \) |
| 7 | \( 1 + (0.142 + 0.989i)T \) |
| 23 | \( 1 + (-0.959 - 0.281i)T \) |
good | 5 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 11 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 13 | \( 1 + (0.118 - 0.822i)T + (-0.959 - 0.281i)T^{2} \) |
| 17 | \( 1 + (-1.10 - 1.27i)T + (-0.142 + 0.989i)T^{2} \) |
| 19 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 29 | \( 1 + (1.25 + 1.45i)T + (-0.142 + 0.989i)T^{2} \) |
| 31 | \( 1 + (-1.25 - 0.368i)T + (0.841 + 0.540i)T^{2} \) |
| 37 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 41 | \( 1 + (1.41 + 0.909i)T + (0.415 + 0.909i)T^{2} \) |
| 43 | \( 1 + (-1.84 + 0.540i)T + (0.841 - 0.540i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.186 + 1.29i)T + (-0.959 + 0.281i)T^{2} \) |
| 59 | \( 1 + (0.0405 - 0.281i)T + (-0.959 - 0.281i)T^{2} \) |
| 61 | \( 1 + (-0.273 - 0.0801i)T + (0.841 + 0.540i)T^{2} \) |
| 67 | \( 1 + (0.118 + 0.258i)T + (-0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (-0.118 - 0.258i)T + (-0.654 + 0.755i)T^{2} \) |
| 73 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 79 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 83 | \( 1 + (0.698 - 0.449i)T + (0.415 - 0.909i)T^{2} \) |
| 89 | \( 1 + (1.25 - 0.368i)T + (0.841 - 0.540i)T^{2} \) |
| 97 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.554464032214440340359097991187, −7.87908959964982568768837954309, −7.30934168755651771840938097881, −6.62729866966941309295511570267, −5.30933198207126927515106945093, −4.12482177645325873928252987915, −3.79928592203321097710347647978, −2.95214911705127405713504010768, −1.87955938062060410866079736869, −1.10456139279841582313102518272,
1.21666804948121053734413287137, 2.64292601468562311014210780838, 3.21718435356352445582691380857, 4.53434581220936736908657292688, 5.14876531369274457218368026233, 5.83793453035278798785897143418, 6.84060730122563490289053965742, 7.50857847676502265957003936033, 8.138754514317786035903442239877, 8.777746554833905969510559084454