L(s) = 1 | + (−0.415 − 0.909i)2-s + (0.959 − 0.281i)3-s + (−0.654 + 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.142 − 0.989i)7-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)9-s + (−0.415 + 0.909i)12-s + (−0.118 + 0.822i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (1.10 + 1.27i)17-s + (−0.841 − 0.540i)18-s + (−0.415 − 0.909i)21-s + (0.959 + 0.281i)23-s + 0.999·24-s + ⋯ |
L(s) = 1 | + (−0.415 − 0.909i)2-s + (0.959 − 0.281i)3-s + (−0.654 + 0.755i)4-s + (−0.654 − 0.755i)6-s + (−0.142 − 0.989i)7-s + (0.959 + 0.281i)8-s + (0.841 − 0.540i)9-s + (−0.415 + 0.909i)12-s + (−0.118 + 0.822i)13-s + (−0.841 + 0.540i)14-s + (−0.142 − 0.989i)16-s + (1.10 + 1.27i)17-s + (−0.841 − 0.540i)18-s + (−0.415 − 0.909i)21-s + (0.959 + 0.281i)23-s + 0.999·24-s + ⋯ |
Λ(s)=(=(3864s/2ΓC(s)L(s)(0.117+0.993i)Λ(1−s)
Λ(s)=(=(3864s/2ΓC(s)L(s)(0.117+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
3864
= 23⋅3⋅7⋅23
|
Sign: |
0.117+0.993i
|
Analytic conductor: |
1.92838 |
Root analytic conductor: |
1.38866 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3864(2603,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3864, ( :0), 0.117+0.993i)
|
Particular Values
L(21) |
≈ |
1.476205546 |
L(21) |
≈ |
1.476205546 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.415+0.909i)T |
| 3 | 1+(−0.959+0.281i)T |
| 7 | 1+(0.142+0.989i)T |
| 23 | 1+(−0.959−0.281i)T |
good | 5 | 1+(−0.415−0.909i)T2 |
| 11 | 1+(0.654+0.755i)T2 |
| 13 | 1+(0.118−0.822i)T+(−0.959−0.281i)T2 |
| 17 | 1+(−1.10−1.27i)T+(−0.142+0.989i)T2 |
| 19 | 1+(0.142+0.989i)T2 |
| 29 | 1+(1.25+1.45i)T+(−0.142+0.989i)T2 |
| 31 | 1+(−1.25−0.368i)T+(0.841+0.540i)T2 |
| 37 | 1+(−0.415+0.909i)T2 |
| 41 | 1+(1.41+0.909i)T+(0.415+0.909i)T2 |
| 43 | 1+(−1.84+0.540i)T+(0.841−0.540i)T2 |
| 47 | 1−T2 |
| 53 | 1+(0.186+1.29i)T+(−0.959+0.281i)T2 |
| 59 | 1+(0.0405−0.281i)T+(−0.959−0.281i)T2 |
| 61 | 1+(−0.273−0.0801i)T+(0.841+0.540i)T2 |
| 67 | 1+(0.118+0.258i)T+(−0.654+0.755i)T2 |
| 71 | 1+(−0.118−0.258i)T+(−0.654+0.755i)T2 |
| 73 | 1+(0.142+0.989i)T2 |
| 79 | 1+(0.959+0.281i)T2 |
| 83 | 1+(0.698−0.449i)T+(0.415−0.909i)T2 |
| 89 | 1+(1.25−0.368i)T+(0.841−0.540i)T2 |
| 97 | 1+(−0.415−0.909i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.554464032214440340359097991187, −7.87908959964982568768837954309, −7.30934168755651771840938097881, −6.62729866966941309295511570267, −5.30933198207126927515106945093, −4.12482177645325873928252987915, −3.79928592203321097710347647978, −2.95214911705127405713504010768, −1.87955938062060410866079736869, −1.10456139279841582313102518272,
1.21666804948121053734413287137, 2.64292601468562311014210780838, 3.21718435356352445582691380857, 4.53434581220936736908657292688, 5.14876531369274457218368026233, 5.83793453035278798785897143418, 6.84060730122563490289053965742, 7.50857847676502265957003936033, 8.138754514317786035903442239877, 8.777746554833905969510559084454