L(s) = 1 | + (−0.190 − 0.587i)3-s + (0.5 − 0.363i)9-s + (1.30 + 0.951i)17-s + (0.5 + 1.53i)19-s + (0.309 + 0.951i)25-s + (−0.809 − 0.587i)27-s + (0.190 + 0.587i)41-s − 0.618·43-s + (−0.809 − 0.587i)49-s + (0.309 − 0.951i)51-s + (0.809 − 0.587i)57-s + (0.5 − 1.53i)59-s + 1.61·67-s + (0.190 − 0.587i)73-s + (0.5 − 0.363i)75-s + ⋯ |
L(s) = 1 | + (−0.190 − 0.587i)3-s + (0.5 − 0.363i)9-s + (1.30 + 0.951i)17-s + (0.5 + 1.53i)19-s + (0.309 + 0.951i)25-s + (−0.809 − 0.587i)27-s + (0.190 + 0.587i)41-s − 0.618·43-s + (−0.809 − 0.587i)49-s + (0.309 − 0.951i)51-s + (0.809 − 0.587i)57-s + (0.5 − 1.53i)59-s + 1.61·67-s + (0.190 − 0.587i)73-s + (0.5 − 0.363i)75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.341064116\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.341064116\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + 0.618T + T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 - 1.61T + T^{2} \) |
| 71 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.326050721334343529810883974680, −7.935421209579347632186535467520, −7.17524784941123476321920731668, −6.41975433485721405781453964527, −5.76508775386321506666672070296, −5.02472956278491721554359952515, −3.78971209761155360699784115861, −3.37274262229369935377825936310, −1.87176521693342426096436681134, −1.17838969455477199886323253389,
0.981682183584508824880832420051, 2.39669458012458752597583341944, 3.24805215846863542836296870444, 4.22374558718100441281771083578, 4.98562081994747938582186822852, 5.43470860799048398654561244468, 6.55322448122963253208779282278, 7.26198679935756144741850182064, 7.86118758419897716921171784890, 8.809581134972902504610123131467