L(s) = 1 | + (−0.190 − 0.587i)3-s + (0.5 − 0.363i)9-s + (1.30 + 0.951i)17-s + (0.5 + 1.53i)19-s + (0.309 + 0.951i)25-s + (−0.809 − 0.587i)27-s + (0.190 + 0.587i)41-s − 0.618·43-s + (−0.809 − 0.587i)49-s + (0.309 − 0.951i)51-s + (0.809 − 0.587i)57-s + (0.5 − 1.53i)59-s + 1.61·67-s + (0.190 − 0.587i)73-s + (0.5 − 0.363i)75-s + ⋯ |
L(s) = 1 | + (−0.190 − 0.587i)3-s + (0.5 − 0.363i)9-s + (1.30 + 0.951i)17-s + (0.5 + 1.53i)19-s + (0.309 + 0.951i)25-s + (−0.809 − 0.587i)27-s + (0.190 + 0.587i)41-s − 0.618·43-s + (−0.809 − 0.587i)49-s + (0.309 − 0.951i)51-s + (0.809 − 0.587i)57-s + (0.5 − 1.53i)59-s + 1.61·67-s + (0.190 − 0.587i)73-s + (0.5 − 0.363i)75-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.970+0.242i)Λ(1−s)
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.970+0.242i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
0.970+0.242i
|
Analytic conductor: |
1.93237 |
Root analytic conductor: |
1.39010 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(1455,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :0), 0.970+0.242i)
|
Particular Values
L(21) |
≈ |
1.341064116 |
L(21) |
≈ |
1.341064116 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(0.190+0.587i)T+(−0.809+0.587i)T2 |
| 5 | 1+(−0.309−0.951i)T2 |
| 7 | 1+(0.809+0.587i)T2 |
| 13 | 1+(−0.309+0.951i)T2 |
| 17 | 1+(−1.30−0.951i)T+(0.309+0.951i)T2 |
| 19 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 23 | 1−T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(−0.309+0.951i)T2 |
| 37 | 1+(0.809+0.587i)T2 |
| 41 | 1+(−0.190−0.587i)T+(−0.809+0.587i)T2 |
| 43 | 1+0.618T+T2 |
| 47 | 1+(0.809−0.587i)T2 |
| 53 | 1+(−0.309+0.951i)T2 |
| 59 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 61 | 1+(−0.309−0.951i)T2 |
| 67 | 1−1.61T+T2 |
| 71 | 1+(−0.309−0.951i)T2 |
| 73 | 1+(−0.190+0.587i)T+(−0.809−0.587i)T2 |
| 79 | 1+(−0.309+0.951i)T2 |
| 83 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 89 | 1−0.618T+T2 |
| 97 | 1+(0.5−0.363i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.326050721334343529810883974680, −7.935421209579347632186535467520, −7.17524784941123476321920731668, −6.41975433485721405781453964527, −5.76508775386321506666672070296, −5.02472956278491721554359952515, −3.78971209761155360699784115861, −3.37274262229369935377825936310, −1.87176521693342426096436681134, −1.17838969455477199886323253389,
0.981682183584508824880832420051, 2.39669458012458752597583341944, 3.24805215846863542836296870444, 4.22374558718100441281771083578, 4.98562081994747938582186822852, 5.43470860799048398654561244468, 6.55322448122963253208779282278, 7.26198679935756144741850182064, 7.86118758419897716921171784890, 8.809581134972902504610123131467