L(s) = 1 | + (−1.30 + 0.951i)3-s + (0.500 − 1.53i)9-s + (0.190 + 0.587i)17-s + (0.5 − 0.363i)19-s + (−0.809 + 0.587i)25-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)41-s + 1.61·43-s + (0.309 + 0.951i)49-s + (−0.809 − 0.587i)51-s + (−0.309 + 0.951i)57-s + (0.5 + 0.363i)59-s − 0.618·67-s + (1.30 + 0.951i)73-s + (0.5 − 1.53i)75-s + ⋯ |
L(s) = 1 | + (−1.30 + 0.951i)3-s + (0.500 − 1.53i)9-s + (0.190 + 0.587i)17-s + (0.5 − 0.363i)19-s + (−0.809 + 0.587i)25-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)41-s + 1.61·43-s + (0.309 + 0.951i)49-s + (−0.809 − 0.587i)51-s + (−0.309 + 0.951i)57-s + (0.5 + 0.363i)59-s − 0.618·67-s + (1.30 + 0.951i)73-s + (0.5 − 1.53i)75-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.0219−0.999i)Λ(1−s)
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.0219−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
0.0219−0.999i
|
Analytic conductor: |
1.93237 |
Root analytic conductor: |
1.39010 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(2671,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :0), 0.0219−0.999i)
|
Particular Values
L(21) |
≈ |
0.7383908307 |
L(21) |
≈ |
0.7383908307 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(1.30−0.951i)T+(0.309−0.951i)T2 |
| 5 | 1+(0.809−0.587i)T2 |
| 7 | 1+(−0.309−0.951i)T2 |
| 13 | 1+(0.809+0.587i)T2 |
| 17 | 1+(−0.190−0.587i)T+(−0.809+0.587i)T2 |
| 19 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 23 | 1−T2 |
| 29 | 1+(−0.309−0.951i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(−0.309−0.951i)T2 |
| 41 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 43 | 1−1.61T+T2 |
| 47 | 1+(−0.309+0.951i)T2 |
| 53 | 1+(0.809+0.587i)T2 |
| 59 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 61 | 1+(0.809−0.587i)T2 |
| 67 | 1+0.618T+T2 |
| 71 | 1+(0.809−0.587i)T2 |
| 73 | 1+(−1.30−0.951i)T+(0.309+0.951i)T2 |
| 79 | 1+(0.809+0.587i)T2 |
| 83 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 89 | 1+1.61T+T2 |
| 97 | 1+(0.5−1.53i)T+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.196409396962537377056976679090, −8.051718782102147034269799119664, −7.28235121253237444136835847260, −6.40456257275428403565794729717, −5.65869692664908462425563826728, −5.29530044953628164443853671495, −4.23443281559646161965441633025, −3.82776802643958777810612639163, −2.53757958295007691175271558561, −1.02671392762518929445375979857,
0.63160312063844911773506738522, 1.70270477977171873244679121242, 2.76391064844183213849282200554, 4.03246293479021643975295774981, 4.92602962460192068984586526441, 5.72133682082126376360895262484, 6.14097983279626670588289387284, 7.00615430887541538212191911658, 7.55480749976502482445946363062, 8.202288729785028763356844294480