L(s) = 1 | + (−1.30 + 0.951i)3-s + (0.500 − 1.53i)9-s + (0.190 + 0.587i)17-s + (0.5 − 0.363i)19-s + (−0.809 + 0.587i)25-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)41-s + 1.61·43-s + (0.309 + 0.951i)49-s + (−0.809 − 0.587i)51-s + (−0.309 + 0.951i)57-s + (0.5 + 0.363i)59-s − 0.618·67-s + (1.30 + 0.951i)73-s + (0.5 − 1.53i)75-s + ⋯ |
L(s) = 1 | + (−1.30 + 0.951i)3-s + (0.500 − 1.53i)9-s + (0.190 + 0.587i)17-s + (0.5 − 0.363i)19-s + (−0.809 + 0.587i)25-s + (0.309 + 0.951i)27-s + (1.30 − 0.951i)41-s + 1.61·43-s + (0.309 + 0.951i)49-s + (−0.809 − 0.587i)51-s + (−0.309 + 0.951i)57-s + (0.5 + 0.363i)59-s − 0.618·67-s + (1.30 + 0.951i)73-s + (0.5 − 1.53i)75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0219 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0219 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7383908307\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7383908307\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - 1.61T + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + 0.618T + T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + 1.61T + T^{2} \) |
| 97 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.196409396962537377056976679090, −8.051718782102147034269799119664, −7.28235121253237444136835847260, −6.40456257275428403565794729717, −5.65869692664908462425563826728, −5.29530044953628164443853671495, −4.23443281559646161965441633025, −3.82776802643958777810612639163, −2.53757958295007691175271558561, −1.02671392762518929445375979857,
0.63160312063844911773506738522, 1.70270477977171873244679121242, 2.76391064844183213849282200554, 4.03246293479021643975295774981, 4.92602962460192068984586526441, 5.72133682082126376360895262484, 6.14097983279626670588289387284, 7.00615430887541538212191911658, 7.55480749976502482445946363062, 8.202288729785028763356844294480