L(s) = 1 | + (−0.816 − 3.04i)2-s + (0.866 − 1.5i)3-s + (−5.15 + 2.97i)4-s + (1.44 − 1.44i)5-s + (−5.27 − 1.41i)6-s + (−1.58 + 5.91i)7-s + (4.36 + 4.36i)8-s + (−1.5 − 2.59i)9-s + (−5.59 − 3.23i)10-s + (16.5 − 4.42i)11-s + 10.3i·12-s + (12.0 − 4.94i)13-s + 19.3·14-s + (−0.918 − 3.42i)15-s + (−2.16 + 3.75i)16-s + (−24.4 + 14.1i)17-s + ⋯ |
L(s) = 1 | + (−0.408 − 1.52i)2-s + (0.288 − 0.5i)3-s + (−1.28 + 0.744i)4-s + (0.289 − 0.289i)5-s + (−0.879 − 0.235i)6-s + (−0.226 + 0.844i)7-s + (0.546 + 0.546i)8-s + (−0.166 − 0.288i)9-s + (−0.559 − 0.323i)10-s + (1.50 − 0.402i)11-s + 0.859i·12-s + (0.924 − 0.380i)13-s + 1.38·14-s + (−0.0612 − 0.228i)15-s + (−0.135 + 0.234i)16-s + (−1.43 + 0.829i)17-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(−0.640+0.767i)Λ(3−s)
Λ(s)=(=(39s/2ΓC(s+1)L(s)(−0.640+0.767i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
−0.640+0.767i
|
Analytic conductor: |
1.06267 |
Root analytic conductor: |
1.03086 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1), −0.640+0.767i)
|
Particular Values
L(23) |
≈ |
0.401221−0.857163i |
L(21) |
≈ |
0.401221−0.857163i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866+1.5i)T |
| 13 | 1+(−12.0+4.94i)T |
good | 2 | 1+(0.816+3.04i)T+(−3.46+2i)T2 |
| 5 | 1+(−1.44+1.44i)T−25iT2 |
| 7 | 1+(1.58−5.91i)T+(−42.4−24.5i)T2 |
| 11 | 1+(−16.5+4.42i)T+(104.−60.5i)T2 |
| 17 | 1+(24.4−14.1i)T+(144.5−250.i)T2 |
| 19 | 1+(−15.6−4.20i)T+(312.+180.5i)T2 |
| 23 | 1+(16.5+9.55i)T+(264.5+458.i)T2 |
| 29 | 1+(9.62−16.6i)T+(−420.5−728.i)T2 |
| 31 | 1+(4.19−4.19i)T−961iT2 |
| 37 | 1+(40.5−10.8i)T+(1.18e3−684.5i)T2 |
| 41 | 1+(2.32+8.67i)T+(−1.45e3+840.5i)T2 |
| 43 | 1+(−47.3+27.3i)T+(924.5−1.60e3i)T2 |
| 47 | 1+(10.9+10.9i)T+2.20e3iT2 |
| 53 | 1+58.0T+2.80e3T2 |
| 59 | 1+(4.32−16.1i)T+(−3.01e3−1.74e3i)T2 |
| 61 | 1+(42.5+73.6i)T+(−1.86e3+3.22e3i)T2 |
| 67 | 1+(6.52+24.3i)T+(−3.88e3+2.24e3i)T2 |
| 71 | 1+(−67.6−18.1i)T+(4.36e3+2.52e3i)T2 |
| 73 | 1+(73.9+73.9i)T+5.32e3iT2 |
| 79 | 1−0.739T+6.24e3T2 |
| 83 | 1+(−29.6+29.6i)T−6.88e3iT2 |
| 89 | 1+(102.−27.5i)T+(6.85e3−3.96e3i)T2 |
| 97 | 1+(−60.9−16.3i)T+(8.14e3+4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.56805615593219281907746695821, −13.93522212397359215027669916331, −12.84905685470703025873794808092, −11.95683116322309945405538383685, −10.88886369008489379252977106127, −9.233615554687916245643762006009, −8.685261434636637493061787180752, −6.23791029039975453731866571142, −3.57362183956764071032954922214, −1.67551174135104980136730032165,
4.26261708654315337460284569324, 6.26327211528674902318134667200, 7.24617950669371948751281824785, 8.861471773932817403790417644166, 9.723214511951638311461118942601, 11.40034834297343016450655418527, 13.75564102611775922121845351503, 14.20165080707734702612855782544, 15.55214034593229068143939822690, 16.28030321183000778028073430762