L(s) = 1 | + (−1.28 + 2.21i)2-s + (−0.5 + 0.866i)3-s + (−2.28 − 3.95i)4-s + 0.561·5-s + (−1.28 − 2.21i)6-s + (1.78 + 3.08i)7-s + 6.56·8-s + (−0.499 − 0.866i)9-s + (−0.719 + 1.24i)10-s + (1 − 1.73i)11-s + 4.56·12-s + (0.5 − 3.57i)13-s − 9.12·14-s + (−0.280 + 0.486i)15-s + (−3.84 + 6.65i)16-s + (−1.28 − 2.21i)17-s + ⋯ |
L(s) = 1 | + (−0.905 + 1.56i)2-s + (−0.288 + 0.499i)3-s + (−1.14 − 1.97i)4-s + 0.251·5-s + (−0.522 − 0.905i)6-s + (0.673 + 1.16i)7-s + 2.31·8-s + (−0.166 − 0.288i)9-s + (−0.227 + 0.393i)10-s + (0.301 − 0.522i)11-s + 1.31·12-s + (0.138 − 0.990i)13-s − 2.43·14-s + (−0.0724 + 0.125i)15-s + (−0.960 + 1.66i)16-s + (−0.310 − 0.538i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.597 - 0.802i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.597 - 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.221424 + 0.440843i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.221424 + 0.440843i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.5 + 3.57i)T \) |
good | 2 | \( 1 + (1.28 - 2.21i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 - 0.561T + 5T^{2} \) |
| 7 | \( 1 + (-1.78 - 3.08i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.28 + 2.21i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.561 - 0.972i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.84 + 4.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.56T + 31T^{2} \) |
| 37 | \( 1 + (1.71 - 2.97i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.28 - 2.21i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.219 + 0.379i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 8.24T + 47T^{2} \) |
| 53 | \( 1 - 11.6T + 53T^{2} \) |
| 59 | \( 1 + (-5.56 - 9.63i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.06 + 10.4i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.219 - 0.379i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7 + 12.1i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.87T + 73T^{2} \) |
| 79 | \( 1 - 9.56T + 79T^{2} \) |
| 83 | \( 1 + 9.12T + 83T^{2} \) |
| 89 | \( 1 + (6.56 - 11.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.21 - 3.84i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.63626487814764417731471398613, −15.57813499304656079020648439903, −15.01285821919102920629488857213, −13.75745221868974112782545901432, −11.65894298933109523607952369996, −10.08321046175364581921012691368, −8.947228123916774784562183180588, −7.961425274891963000628013599450, −6.13080867782957238623680716028, −5.22682145542702382543323010512,
1.69954342443032167672892412906, 4.19046505752440223713785140131, 7.16476381016400549389812101067, 8.593978564601701248595039586842, 10.00983854422326925471949820373, 11.01306185846334421911876392666, 11.92839061625033255481999988837, 13.14467812921236505569820267523, 14.19216404935030640251005927216, 16.62083944234154749659699482497