L(s) = 1 | + (−1.28 + 2.21i)2-s + (−0.5 + 0.866i)3-s + (−2.28 − 3.95i)4-s + 0.561·5-s + (−1.28 − 2.21i)6-s + (1.78 + 3.08i)7-s + 6.56·8-s + (−0.499 − 0.866i)9-s + (−0.719 + 1.24i)10-s + (1 − 1.73i)11-s + 4.56·12-s + (0.5 − 3.57i)13-s − 9.12·14-s + (−0.280 + 0.486i)15-s + (−3.84 + 6.65i)16-s + (−1.28 − 2.21i)17-s + ⋯ |
L(s) = 1 | + (−0.905 + 1.56i)2-s + (−0.288 + 0.499i)3-s + (−1.14 − 1.97i)4-s + 0.251·5-s + (−0.522 − 0.905i)6-s + (0.673 + 1.16i)7-s + 2.31·8-s + (−0.166 − 0.288i)9-s + (−0.227 + 0.393i)10-s + (0.301 − 0.522i)11-s + 1.31·12-s + (0.138 − 0.990i)13-s − 2.43·14-s + (−0.0724 + 0.125i)15-s + (−0.960 + 1.66i)16-s + (−0.310 − 0.538i)17-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(−0.597−0.802i)Λ(2−s)
Λ(s)=(=(39s/2ΓC(s+1/2)L(s)(−0.597−0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
−0.597−0.802i
|
Analytic conductor: |
0.311416 |
Root analytic conductor: |
0.558047 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1/2), −0.597−0.802i)
|
Particular Values
L(1) |
≈ |
0.221424+0.440843i |
L(21) |
≈ |
0.221424+0.440843i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5−0.866i)T |
| 13 | 1+(−0.5+3.57i)T |
good | 2 | 1+(1.28−2.21i)T+(−1−1.73i)T2 |
| 5 | 1−0.561T+5T2 |
| 7 | 1+(−1.78−3.08i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1+1.73i)T+(−5.5−9.52i)T2 |
| 17 | 1+(1.28+2.21i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−0.561−0.972i)T+(−9.5+16.4i)T2 |
| 23 | 1+(1−1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.84+4.92i)T+(−14.5−25.1i)T2 |
| 31 | 1+1.56T+31T2 |
| 37 | 1+(1.71−2.97i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.28−2.21i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.219+0.379i)T+(−21.5+37.2i)T2 |
| 47 | 1+8.24T+47T2 |
| 53 | 1−11.6T+53T2 |
| 59 | 1+(−5.56−9.63i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.06+10.4i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.219−0.379i)T+(−33.5−58.0i)T2 |
| 71 | 1+(7+12.1i)T+(−35.5+61.4i)T2 |
| 73 | 1+1.87T+73T2 |
| 79 | 1−9.56T+79T2 |
| 83 | 1+9.12T+83T2 |
| 89 | 1+(6.56−11.3i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−2.21−3.84i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.63626487814764417731471398613, −15.57813499304656079020648439903, −15.01285821919102920629488857213, −13.75745221868974112782545901432, −11.65894298933109523607952369996, −10.08321046175364581921012691368, −8.947228123916774784562183180588, −7.961425274891963000628013599450, −6.13080867782957238623680716028, −5.22682145542702382543323010512,
1.69954342443032167672892412906, 4.19046505752440223713785140131, 7.16476381016400549389812101067, 8.593978564601701248595039586842, 10.00983854422326925471949820373, 11.01306185846334421911876392666, 11.92839061625033255481999988837, 13.14467812921236505569820267523, 14.19216404935030640251005927216, 16.62083944234154749659699482497