L(s) = 1 | + (−1.45 − 0.389i)2-s + (0.239 − 1.71i)3-s + (0.232 + 0.133i)4-s + (1.06 − 1.06i)5-s + (−1.01 + 2.40i)6-s + (0.366 + 1.36i)7-s + (1.84 + 1.84i)8-s + (−2.88 − 0.820i)9-s + (−1.96 + 1.13i)10-s + (−1.06 + 3.97i)11-s + (0.285 − 0.366i)12-s + (3.59 + 0.232i)13-s − 2.12i·14-s + (−1.57 − 2.08i)15-s + (−2.23 − 3.86i)16-s + (2.51 − 4.36i)17-s + ⋯ |
L(s) = 1 | + (−1.02 − 0.275i)2-s + (0.138 − 0.990i)3-s + (0.116 + 0.0669i)4-s + (0.476 − 0.476i)5-s + (−0.415 + 0.980i)6-s + (0.138 + 0.516i)7-s + (0.652 + 0.652i)8-s + (−0.961 − 0.273i)9-s + (−0.621 + 0.358i)10-s + (−0.321 + 1.19i)11-s + (0.0823 − 0.105i)12-s + (0.997 + 0.0643i)13-s − 0.569i·14-s + (−0.405 − 0.537i)15-s + (−0.558 − 0.966i)16-s + (0.611 − 1.05i)17-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(0.351+0.936i)Λ(2−s)
Λ(s)=(=(39s/2ΓC(s+1/2)L(s)(0.351+0.936i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
0.351+0.936i
|
Analytic conductor: |
0.311416 |
Root analytic conductor: |
0.558047 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1/2), 0.351+0.936i)
|
Particular Values
L(1) |
≈ |
0.421043−0.291630i |
L(21) |
≈ |
0.421043−0.291630i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.239+1.71i)T |
| 13 | 1+(−3.59−0.232i)T |
good | 2 | 1+(1.45+0.389i)T+(1.73+i)T2 |
| 5 | 1+(−1.06+1.06i)T−5iT2 |
| 7 | 1+(−0.366−1.36i)T+(−6.06+3.5i)T2 |
| 11 | 1+(1.06−3.97i)T+(−9.52−5.5i)T2 |
| 17 | 1+(−2.51+4.36i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.73−i)T+(16.4−9.5i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1+(6.20−3.58i)T+(14.5−25.1i)T2 |
| 31 | 1+(2.46+2.46i)T+31iT2 |
| 37 | 1+(5.23+1.40i)T+(32.0+18.5i)T2 |
| 41 | 1+(−5.42−1.45i)T+(35.5+20.5i)T2 |
| 43 | 1+(−1.90−1.09i)T+(21.5+37.2i)T2 |
| 47 | 1+(4.25+4.25i)T+47iT2 |
| 53 | 1+0.779iT−53T2 |
| 59 | 1+(2.90−0.779i)T+(51.0−29.5i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.53−5.73i)T+(−58.0−33.5i)T2 |
| 71 | 1+(0.779+2.90i)T+(−61.4+35.5i)T2 |
| 73 | 1+(0.901−0.901i)T−73iT2 |
| 79 | 1−2T+79T2 |
| 83 | 1+(−2.90+2.90i)T−83iT2 |
| 89 | 1+(2.41−9.01i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−1.63+0.437i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.55743357445146294226353549882, −14.78615635204347166425771417192, −13.53082564970482701980803769968, −12.50570744403579383388635188000, −11.13681544742550342333398363301, −9.560487094476591237969049109584, −8.642274846801149240759873676364, −7.37041387682648272866778873398, −5.43884288613253686495927374509, −1.84816786409955800015425415144,
3.81856285014947763266534833046, 6.05142661502583991481500636523, 8.045450346075109607081572456416, 8.997619564720382669656620647576, 10.39841282818986344036276589992, 10.87756384267549753742568170851, 13.28951949705771400240830153780, 14.32023371589416464065032437022, 15.72051592257398388121122366497, 16.66238193703605810760542091106