Properties

Label 2-39-39.20-c1-0-0
Degree 22
Conductor 3939
Sign 0.2480.968i0.248 - 0.968i
Analytic cond. 0.3114160.311416
Root an. cond. 0.5580470.558047
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.619 + 2.31i)2-s + (−1.28 − 1.16i)3-s + (−3.23 + 1.86i)4-s + (1.69 − 1.69i)5-s + (1.89 − 3.68i)6-s + (−1.36 − 0.366i)7-s + (−2.93 − 2.93i)8-s + (0.292 + 2.98i)9-s + (4.96 + 2.86i)10-s + (−1.69 + 0.453i)11-s + (6.31 + 1.36i)12-s + (−1.59 − 3.23i)13-s − 3.38i·14-s + (−4.14 + 0.202i)15-s + (1.23 − 2.13i)16-s + (1.07 + 1.85i)17-s + ⋯
L(s)  = 1  + (0.438 + 1.63i)2-s + (−0.740 − 0.671i)3-s + (−1.61 + 0.933i)4-s + (0.757 − 0.757i)5-s + (0.773 − 1.50i)6-s + (−0.516 − 0.138i)7-s + (−1.03 − 1.03i)8-s + (0.0975 + 0.995i)9-s + (1.56 + 0.906i)10-s + (−0.510 + 0.136i)11-s + (1.82 + 0.394i)12-s + (−0.443 − 0.896i)13-s − 0.904i·14-s + (−1.06 + 0.0523i)15-s + (0.308 − 0.533i)16-s + (0.260 + 0.450i)17-s + ⋯

Functional equation

Λ(s)=(39s/2ΓC(s)L(s)=((0.2480.968i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(39s/2ΓC(s+1/2)L(s)=((0.2480.968i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 3939    =    3133 \cdot 13
Sign: 0.2480.968i0.248 - 0.968i
Analytic conductor: 0.3114160.311416
Root analytic conductor: 0.5580470.558047
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ39(20,)\chi_{39} (20, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 39, ( :1/2), 0.2480.968i)(2,\ 39,\ (\ :1/2),\ 0.248 - 0.968i)

Particular Values

L(1)L(1) \approx 0.603367+0.467915i0.603367 + 0.467915i
L(12)L(\frac12) \approx 0.603367+0.467915i0.603367 + 0.467915i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.28+1.16i)T 1 + (1.28 + 1.16i)T
13 1+(1.59+3.23i)T 1 + (1.59 + 3.23i)T
good2 1+(0.6192.31i)T+(1.73+i)T2 1 + (-0.619 - 2.31i)T + (-1.73 + i)T^{2}
5 1+(1.69+1.69i)T5iT2 1 + (-1.69 + 1.69i)T - 5iT^{2}
7 1+(1.36+0.366i)T+(6.06+3.5i)T2 1 + (1.36 + 0.366i)T + (6.06 + 3.5i)T^{2}
11 1+(1.690.453i)T+(9.525.5i)T2 1 + (1.69 - 0.453i)T + (9.52 - 5.5i)T^{2}
17 1+(1.071.85i)T+(8.5+14.7i)T2 1 + (-1.07 - 1.85i)T + (-8.5 + 14.7i)T^{2}
19 1+(0.267i)T+(16.49.5i)T2 1 + (0.267 - i)T + (-16.4 - 9.5i)T^{2}
23 1+(11.519.9i)T2 1 + (-11.5 - 19.9i)T^{2}
29 1+(4.792.76i)T+(14.5+25.1i)T2 1 + (-4.79 - 2.76i)T + (14.5 + 25.1i)T^{2}
31 1+(4.464.46i)T+31iT2 1 + (-4.46 - 4.46i)T + 31iT^{2}
37 1+(1.76+6.59i)T+(32.0+18.5i)T2 1 + (1.76 + 6.59i)T + (-32.0 + 18.5i)T^{2}
41 1+(0.166+0.619i)T+(35.5+20.5i)T2 1 + (0.166 + 0.619i)T + (-35.5 + 20.5i)T^{2}
43 1+(7.09+4.09i)T+(21.537.2i)T2 1 + (-7.09 + 4.09i)T + (21.5 - 37.2i)T^{2}
47 1+(6.77+6.77i)T+47iT2 1 + (6.77 + 6.77i)T + 47iT^{2}
53 14.62iT53T2 1 - 4.62iT - 53T^{2}
59 1+(1.23+4.62i)T+(51.029.5i)T2 1 + (-1.23 + 4.62i)T + (-51.0 - 29.5i)T^{2}
61 1+(3.56.06i)T+(30.5+52.8i)T2 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2}
67 1+(8.462.26i)T+(58.033.5i)T2 1 + (8.46 - 2.26i)T + (58.0 - 33.5i)T^{2}
71 1+(4.621.23i)T+(61.4+35.5i)T2 1 + (-4.62 - 1.23i)T + (61.4 + 35.5i)T^{2}
73 1+(6.096.09i)T73iT2 1 + (6.09 - 6.09i)T - 73iT^{2}
79 12T+79T2 1 - 2T + 79T^{2}
83 1+(1.231.23i)T83iT2 1 + (1.23 - 1.23i)T - 83iT^{2}
89 1+(9.702.60i)T+(77.044.5i)T2 1 + (9.70 - 2.60i)T + (77.0 - 44.5i)T^{2}
97 1+(3.36+12.5i)T+(84.048.5i)T2 1 + (-3.36 + 12.5i)T + (-84.0 - 48.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−16.54653774194307208799596870522, −15.66317440429096813659552138770, −14.16084729970142692144691609618, −13.10007655399432880274294286126, −12.52839326432450002874148299896, −10.24220840033534400824433356272, −8.461159458642994795156395746183, −7.19487632050671802615762527029, −5.91572767614074564480228031070, −5.04852373394208917471091899464, 2.85080616848113840615003351245, 4.66855553541343769555966900722, 6.32027748736098314606872610873, 9.527678998635192552840990833118, 10.12230220728853181358322335186, 11.20488791894176410864793618509, 12.15203152923105958253026705160, 13.44072305692369136671791587121, 14.51173279056174674504263381431, 16.04718524146681882632116795961

Graph of the ZZ-function along the critical line