L(s) = 1 | + (0.866 − 1.5i)3-s + (−1.73 + i)4-s + (−0.767 + 2.86i)7-s + (−1.5 − 2.59i)9-s + 3.46i·12-s + (−2.59 − 2.5i)13-s + (1.99 − 3.46i)16-s + (7.83 + 2.09i)19-s + (3.63 + 3.63i)21-s − 5i·25-s − 5.19·27-s + (−1.53 − 5.73i)28-s + (−7.83 + 7.83i)31-s + (5.19 + 3i)36-s + (2.09 − 0.562i)37-s + ⋯ |
L(s) = 1 | + (0.499 − 0.866i)3-s + (−0.866 + 0.5i)4-s + (−0.290 + 1.08i)7-s + (−0.5 − 0.866i)9-s + 0.999i·12-s + (−0.720 − 0.693i)13-s + (0.499 − 0.866i)16-s + (1.79 + 0.481i)19-s + (0.792 + 0.792i)21-s − i·25-s − 1.00·27-s + (−0.290 − 1.08i)28-s + (−1.40 + 1.40i)31-s + (0.866 + 0.5i)36-s + (0.344 − 0.0924i)37-s + ⋯ |
Λ(s)=(=(39s/2ΓC(s)L(s)(0.960+0.277i)Λ(2−s)
Λ(s)=(=(39s/2ΓC(s+1/2)L(s)(0.960+0.277i)Λ(1−s)
Degree: |
2 |
Conductor: |
39
= 3⋅13
|
Sign: |
0.960+0.277i
|
Analytic conductor: |
0.311416 |
Root analytic conductor: |
0.558047 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ39(32,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 39, ( :1/2), 0.960+0.277i)
|
Particular Values
L(1) |
≈ |
0.734633−0.103967i |
L(21) |
≈ |
0.734633−0.103967i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866+1.5i)T |
| 13 | 1+(2.59+2.5i)T |
good | 2 | 1+(1.73−i)T2 |
| 5 | 1+5iT2 |
| 7 | 1+(0.767−2.86i)T+(−6.06−3.5i)T2 |
| 11 | 1+(−9.52+5.5i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(−7.83−2.09i)T+(16.4+9.5i)T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(14.5+25.1i)T2 |
| 31 | 1+(7.83−7.83i)T−31iT2 |
| 37 | 1+(−2.09+0.562i)T+(32.0−18.5i)T2 |
| 41 | 1+(35.5−20.5i)T2 |
| 43 | 1+(1.5−0.866i)T+(21.5−37.2i)T2 |
| 47 | 1−47iT2 |
| 53 | 1−53T2 |
| 59 | 1+(51.0+29.5i)T2 |
| 61 | 1+(−4.33−7.5i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.205−0.767i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−61.4−35.5i)T2 |
| 73 | 1+(9.36+9.36i)T+73iT2 |
| 79 | 1−12.1T+79T2 |
| 83 | 1+83iT2 |
| 89 | 1+(−77.0+44.5i)T2 |
| 97 | 1+(16.4+4.40i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.28138119126810073270275984764, −14.80180401531769427686703023050, −13.81765315447578573887117314647, −12.60526945583769593725335756279, −12.04244590137973943733356661932, −9.662357628454430853550576199998, −8.614704473648495175511787933697, −7.45618645320222714468884015368, −5.50669007436295339404409935203, −3.07843900728166971573586321345,
3.82871138839055860330868972501, 5.18384665668504267031376994747, 7.49888675486433736155097520690, 9.266331349291400128893358857922, 9.878455700632552780346137377328, 11.20671029059133093468554275184, 13.28427303704086341610784007970, 14.04727720450050410999165257189, 14.99871328999823903849859673460, 16.35775847699612248024532957123