L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s − i·5-s + (−0.866 − 0.499i)6-s + (4.02 + 2.32i)7-s − 0.999i·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (3.81 − 2.20i)11-s − 0.999·12-s + (−3.35 + 1.32i)13-s + 4.64·14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + (2 − 3.46i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s − 0.447i·5-s + (−0.353 − 0.204i)6-s + (1.52 + 0.877i)7-s − 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (1.14 − 0.663i)11-s − 0.288·12-s + (−0.930 + 0.366i)13-s + 1.24·14-s + (−0.223 + 0.129i)15-s + (−0.125 − 0.216i)16-s + (0.485 − 0.840i)17-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(0.354+0.934i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(0.354+0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
0.354+0.934i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), 0.354+0.934i)
|
Particular Values
L(1) |
≈ |
1.62799−1.12348i |
L(21) |
≈ |
1.62799−1.12348i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.5+0.866i)T |
| 5 | 1+iT |
| 13 | 1+(3.35−1.32i)T |
good | 7 | 1+(−4.02−2.32i)T+(3.5+6.06i)T2 |
| 11 | 1+(−3.81+2.20i)T+(5.5−9.52i)T2 |
| 17 | 1+(−2+3.46i)T+(−8.5−14.7i)T2 |
| 19 | 1+(6.96+4.02i)T+(9.5+16.4i)T2 |
| 23 | 1+(0.488+0.845i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.15−3.73i)T+(−14.5+25.1i)T2 |
| 31 | 1−6.44iT−31T2 |
| 37 | 1+(−3.28+1.89i)T+(18.5−32.0i)T2 |
| 41 | 1+(6.31−3.64i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.358+0.620i)T+(−21.5−37.2i)T2 |
| 47 | 1−9.75iT−47T2 |
| 53 | 1−13.5T+53T2 |
| 59 | 1+(1.88+1.09i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.73−6.46i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.58−0.912i)T+(33.5−58.0i)T2 |
| 71 | 1+(6.88+3.97i)T+(35.5+61.4i)T2 |
| 73 | 1+4.36iT−73T2 |
| 79 | 1+14.9T+79T2 |
| 83 | 1−3.51iT−83T2 |
| 89 | 1+(−7.07+4.08i)T+(44.5−77.0i)T2 |
| 97 | 1+(−11.9−6.91i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54665343075989333041231188851, −10.60056029780629329673421038406, −9.091157061229725669292686294597, −8.530392440369362893829674397850, −7.25293525731869865508733572228, −6.18557625203512561311730126408, −5.09800905159498476658462088282, −4.47061506942048281765745700127, −2.59524534362457127378917697732, −1.39277743682087190828840128906,
1.93973657953111178776505823991, 3.96084159815244289377413658045, 4.38847175936169729385174991285, 5.61153492403391391604303389884, 6.70496152593544578639994086916, 7.66216107986223151733029519108, 8.467368070231251108577606437796, 10.01995093726069598878330993587, 10.56156504402853270629040377454, 11.62919227687176000370831493050