Properties

Label 2-392-1.1-c5-0-5
Degree $2$
Conductor $392$
Sign $1$
Analytic cond. $62.8704$
Root an. cond. $7.92908$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.99·3-s − 103.·5-s − 234.·9-s + 233.·11-s − 204.·13-s − 308.·15-s − 112.·17-s − 2.48e3·19-s − 3.34e3·23-s + 7.48e3·25-s − 1.42e3·27-s − 4.55e3·29-s − 8.97e3·31-s + 698.·33-s + 3.78e3·37-s − 610.·39-s + 3.65e3·41-s + 2.11e4·43-s + 2.41e4·45-s + 7.79e3·47-s − 335.·51-s − 9.87e3·53-s − 2.40e4·55-s − 7.44e3·57-s + 2.07e4·59-s + 4.44e4·61-s + 2.10e4·65-s + ⋯
L(s)  = 1  + 0.192·3-s − 1.84·5-s − 0.963·9-s + 0.581·11-s − 0.334·13-s − 0.353·15-s − 0.0940·17-s − 1.58·19-s − 1.31·23-s + 2.39·25-s − 0.376·27-s − 1.00·29-s − 1.67·31-s + 0.111·33-s + 0.454·37-s − 0.0643·39-s + 0.339·41-s + 1.74·43-s + 1.77·45-s + 0.514·47-s − 0.0180·51-s − 0.482·53-s − 1.07·55-s − 0.303·57-s + 0.775·59-s + 1.52·61-s + 0.617·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(62.8704\)
Root analytic conductor: \(7.92908\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6006939702\)
\(L(\frac12)\) \(\approx\) \(0.6006939702\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2.99T + 243T^{2} \)
5 \( 1 + 103.T + 3.12e3T^{2} \)
11 \( 1 - 233.T + 1.61e5T^{2} \)
13 \( 1 + 204.T + 3.71e5T^{2} \)
17 \( 1 + 112.T + 1.41e6T^{2} \)
19 \( 1 + 2.48e3T + 2.47e6T^{2} \)
23 \( 1 + 3.34e3T + 6.43e6T^{2} \)
29 \( 1 + 4.55e3T + 2.05e7T^{2} \)
31 \( 1 + 8.97e3T + 2.86e7T^{2} \)
37 \( 1 - 3.78e3T + 6.93e7T^{2} \)
41 \( 1 - 3.65e3T + 1.15e8T^{2} \)
43 \( 1 - 2.11e4T + 1.47e8T^{2} \)
47 \( 1 - 7.79e3T + 2.29e8T^{2} \)
53 \( 1 + 9.87e3T + 4.18e8T^{2} \)
59 \( 1 - 2.07e4T + 7.14e8T^{2} \)
61 \( 1 - 4.44e4T + 8.44e8T^{2} \)
67 \( 1 + 1.09e4T + 1.35e9T^{2} \)
71 \( 1 - 5.73e4T + 1.80e9T^{2} \)
73 \( 1 - 3.50e4T + 2.07e9T^{2} \)
79 \( 1 - 2.70e4T + 3.07e9T^{2} \)
83 \( 1 + 7.13e4T + 3.93e9T^{2} \)
89 \( 1 - 6.37e3T + 5.58e9T^{2} \)
97 \( 1 + 1.70e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89510854046734961717584053963, −9.350959341407567517066036953459, −8.480884139852316502396920142080, −7.84391115469404763043039090846, −6.91336546993878244070952976493, −5.68286875816524345941118314163, −4.20836142591028421356321375023, −3.71266464456169246272345559098, −2.30785117780995352126246963504, −0.38612192193303480728592034268, 0.38612192193303480728592034268, 2.30785117780995352126246963504, 3.71266464456169246272345559098, 4.20836142591028421356321375023, 5.68286875816524345941118314163, 6.91336546993878244070952976493, 7.84391115469404763043039090846, 8.480884139852316502396920142080, 9.350959341407567517066036953459, 10.89510854046734961717584053963

Graph of the $Z$-function along the critical line