L(s) = 1 | + (0.751 + 1.19i)2-s + (−0.115 − 0.768i)3-s + (−0.869 + 1.80i)4-s + (3.94 + 1.54i)5-s + (0.833 − 0.716i)6-s + (−2.02 + 1.70i)7-s + (−2.81 + 0.313i)8-s + (2.28 − 0.706i)9-s + (1.11 + 5.88i)10-s + (0.256 − 0.829i)11-s + (1.48 + 0.459i)12-s + (−3.90 + 0.892i)13-s + (−3.56 − 1.14i)14-s + (0.732 − 3.21i)15-s + (−2.48 − 3.13i)16-s + (4.54 − 3.09i)17-s + ⋯ |
L(s) = 1 | + (0.531 + 0.846i)2-s + (−0.0668 − 0.443i)3-s + (−0.434 + 0.900i)4-s + (1.76 + 0.692i)5-s + (0.340 − 0.292i)6-s + (−0.766 + 0.642i)7-s + (−0.993 + 0.110i)8-s + (0.763 − 0.235i)9-s + (0.351 + 1.86i)10-s + (0.0771 − 0.250i)11-s + (0.428 + 0.132i)12-s + (−1.08 + 0.247i)13-s + (−0.951 − 0.307i)14-s + (0.189 − 0.829i)15-s + (−0.622 − 0.782i)16-s + (1.10 − 0.750i)17-s + ⋯ |
Λ(s)=(=(392s/2ΓC(s)L(s)(0.0211−0.999i)Λ(2−s)
Λ(s)=(=(392s/2ΓC(s+1/2)L(s)(0.0211−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
392
= 23⋅72
|
Sign: |
0.0211−0.999i
|
Analytic conductor: |
3.13013 |
Root analytic conductor: |
1.76921 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ392(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 392, ( :1/2), 0.0211−0.999i)
|
Particular Values
L(1) |
≈ |
1.44705+1.41679i |
L(21) |
≈ |
1.44705+1.41679i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.751−1.19i)T |
| 7 | 1+(2.02−1.70i)T |
good | 3 | 1+(0.115+0.768i)T+(−2.86+0.884i)T2 |
| 5 | 1+(−3.94−1.54i)T+(3.66+3.40i)T2 |
| 11 | 1+(−0.256+0.829i)T+(−9.08−6.19i)T2 |
| 13 | 1+(3.90−0.892i)T+(11.7−5.64i)T2 |
| 17 | 1+(−4.54+3.09i)T+(6.21−15.8i)T2 |
| 19 | 1+(2.86−1.65i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.63−1.79i)T+(8.40+21.4i)T2 |
| 29 | 1+(−0.706+1.46i)T+(−18.0−22.6i)T2 |
| 31 | 1+(2.09−3.62i)T+(−15.5−26.8i)T2 |
| 37 | 1+(6.13−0.459i)T+(36.5−5.51i)T2 |
| 41 | 1+(5.02+6.29i)T+(−9.12+39.9i)T2 |
| 43 | 1+(−2.78−2.22i)T+(9.56+41.9i)T2 |
| 47 | 1+(−9.02+8.37i)T+(3.51−46.8i)T2 |
| 53 | 1+(1.66+0.124i)T+(52.4+7.89i)T2 |
| 59 | 1+(−11.8+4.63i)T+(43.2−40.1i)T2 |
| 61 | 1+(0.0423−0.00317i)T+(60.3−9.09i)T2 |
| 67 | 1+(9.81+5.66i)T+(33.5+58.0i)T2 |
| 71 | 1+(−6.37+3.06i)T+(44.2−55.5i)T2 |
| 73 | 1+(8.10+7.51i)T+(5.45+72.7i)T2 |
| 79 | 1+(−3.55−6.14i)T+(−39.5+68.4i)T2 |
| 83 | 1+(14.1+3.22i)T+(74.7+36.0i)T2 |
| 89 | 1+(−0.0985+0.0303i)T+(73.5−50.1i)T2 |
| 97 | 1+2.98T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.00505309367989537863566448157, −10.28304124478458415275057724081, −9.646011781458590819487257498480, −8.875394000689423154980004184846, −7.23649258881117701089389133220, −6.79174047237643294568683037439, −5.85922907106951690064513912673, −5.17623115230079877022606887887, −3.33142999054634528370217334915, −2.20087643957166395769760504907,
1.34824951724844566143757913632, 2.64028174918018929882009166472, 4.17038488859670098488302106321, 5.07846965686699471739767310639, 5.92026059159427433611185720939, 7.03403790599937256617756589201, 8.869540990920937702821205164624, 9.763953876992225533287212107608, 10.09069978499822193269058404755, 10.69159849003910738661937070452