L(s) = 1 | + (1.36 + 0.354i)2-s + (0.378 + 2.50i)3-s + (1.74 + 0.971i)4-s + (1.47 + 0.580i)5-s + (−0.372 + 3.56i)6-s + (−2.45 − 0.977i)7-s + (2.04 + 1.95i)8-s + (−3.28 + 1.01i)9-s + (1.81 + 1.31i)10-s + (1.04 − 3.38i)11-s + (−1.77 + 4.75i)12-s + (−2.45 + 0.561i)13-s + (−3.01 − 2.21i)14-s + (−0.896 + 3.92i)15-s + (2.11 + 3.39i)16-s + (4.62 − 3.15i)17-s + ⋯ |
L(s) = 1 | + (0.967 + 0.251i)2-s + (0.218 + 1.44i)3-s + (0.873 + 0.485i)4-s + (0.661 + 0.259i)5-s + (−0.152 + 1.45i)6-s + (−0.929 − 0.369i)7-s + (0.724 + 0.689i)8-s + (−1.09 + 0.337i)9-s + (0.574 + 0.417i)10-s + (0.315 − 1.02i)11-s + (−0.512 + 1.37i)12-s + (−0.681 + 0.155i)13-s + (−0.806 − 0.590i)14-s + (−0.231 + 1.01i)15-s + (0.527 + 0.849i)16-s + (1.12 − 0.765i)17-s + ⋯ |
Λ(s)=(=(392s/2ΓC(s)L(s)(−0.0956−0.995i)Λ(2−s)
Λ(s)=(=(392s/2ΓC(s+1/2)L(s)(−0.0956−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
392
= 23⋅72
|
Sign: |
−0.0956−0.995i
|
Analytic conductor: |
3.13013 |
Root analytic conductor: |
1.76921 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ392(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 392, ( :1/2), −0.0956−0.995i)
|
Particular Values
L(1) |
≈ |
1.76619+1.94401i |
L(21) |
≈ |
1.76619+1.94401i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.36−0.354i)T |
| 7 | 1+(2.45+0.977i)T |
good | 3 | 1+(−0.378−2.50i)T+(−2.86+0.884i)T2 |
| 5 | 1+(−1.47−0.580i)T+(3.66+3.40i)T2 |
| 11 | 1+(−1.04+3.38i)T+(−9.08−6.19i)T2 |
| 13 | 1+(2.45−0.561i)T+(11.7−5.64i)T2 |
| 17 | 1+(−4.62+3.15i)T+(6.21−15.8i)T2 |
| 19 | 1+(−1.29+0.746i)T+(9.5−16.4i)T2 |
| 23 | 1+(7.00+4.77i)T+(8.40+21.4i)T2 |
| 29 | 1+(−0.882+1.83i)T+(−18.0−22.6i)T2 |
| 31 | 1+(4.73−8.20i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−6.56+0.492i)T+(36.5−5.51i)T2 |
| 41 | 1+(−3.66−4.59i)T+(−9.12+39.9i)T2 |
| 43 | 1+(0.520+0.415i)T+(9.56+41.9i)T2 |
| 47 | 1+(−1.14+1.06i)T+(3.51−46.8i)T2 |
| 53 | 1+(5.33+0.399i)T+(52.4+7.89i)T2 |
| 59 | 1+(4.93−1.93i)T+(43.2−40.1i)T2 |
| 61 | 1+(−11.6+0.875i)T+(60.3−9.09i)T2 |
| 67 | 1+(0.113+0.0657i)T+(33.5+58.0i)T2 |
| 71 | 1+(2.61−1.26i)T+(44.2−55.5i)T2 |
| 73 | 1+(11.9+11.0i)T+(5.45+72.7i)T2 |
| 79 | 1+(6.19+10.7i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−5.86−1.33i)T+(74.7+36.0i)T2 |
| 89 | 1+(−10.3+3.19i)T+(73.5−50.1i)T2 |
| 97 | 1+10.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54747188678210113281845631010, −10.42584875565952155398164523471, −9.981978270828879551484444061240, −9.041809171339824901385289809423, −7.70417884858977742619758014992, −6.43598661946149498457777375387, −5.67479984011243041145232871963, −4.57487007604418968533393755476, −3.56383218078167661985917469317, −2.77244135227625530937723396968,
1.58838614106480375459109232487, 2.46127558034480351842700048778, 3.87284117407338096427752000483, 5.60764222981453650439186361076, 6.07976840042043219676213381251, 7.20066996275840347935832597247, 7.81633306151332635530600799780, 9.590649540978766784279971074344, 9.967856195881801075828326636790, 11.61129991927956220906422817189