L(s) = 1 | + (1.04 − 0.957i)2-s + (−0.167 − 1.11i)3-s + (0.165 − 1.99i)4-s + (2.65 + 1.04i)5-s + (−1.23 − 0.995i)6-s + (2.56 + 0.648i)7-s + (−1.73 − 2.23i)8-s + (1.66 − 0.512i)9-s + (3.75 − 1.45i)10-s + (−1.29 + 4.20i)11-s + (−2.24 + 0.150i)12-s + (−1.42 + 0.324i)13-s + (3.29 − 1.78i)14-s + (0.711 − 3.11i)15-s + (−3.94 − 0.658i)16-s + (−0.726 + 0.495i)17-s + ⋯ |
L(s) = 1 | + (0.735 − 0.677i)2-s + (−0.0966 − 0.641i)3-s + (0.0826 − 0.996i)4-s + (1.18 + 0.465i)5-s + (−0.505 − 0.406i)6-s + (0.969 + 0.245i)7-s + (−0.614 − 0.789i)8-s + (0.553 − 0.170i)9-s + (1.18 − 0.460i)10-s + (−0.390 + 1.26i)11-s + (−0.646 + 0.0433i)12-s + (−0.394 + 0.0900i)13-s + (0.879 − 0.476i)14-s + (0.183 − 0.804i)15-s + (−0.986 − 0.164i)16-s + (−0.176 + 0.120i)17-s + ⋯ |
Λ(s)=(=(392s/2ΓC(s)L(s)(0.207+0.978i)Λ(2−s)
Λ(s)=(=(392s/2ΓC(s+1/2)L(s)(0.207+0.978i)Λ(1−s)
Degree: |
2 |
Conductor: |
392
= 23⋅72
|
Sign: |
0.207+0.978i
|
Analytic conductor: |
3.13013 |
Root analytic conductor: |
1.76921 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ392(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 392, ( :1/2), 0.207+0.978i)
|
Particular Values
L(1) |
≈ |
1.86302−1.50991i |
L(21) |
≈ |
1.86302−1.50991i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.04+0.957i)T |
| 7 | 1+(−2.56−0.648i)T |
good | 3 | 1+(0.167+1.11i)T+(−2.86+0.884i)T2 |
| 5 | 1+(−2.65−1.04i)T+(3.66+3.40i)T2 |
| 11 | 1+(1.29−4.20i)T+(−9.08−6.19i)T2 |
| 13 | 1+(1.42−0.324i)T+(11.7−5.64i)T2 |
| 17 | 1+(0.726−0.495i)T+(6.21−15.8i)T2 |
| 19 | 1+(4.43−2.55i)T+(9.5−16.4i)T2 |
| 23 | 1+(4.97+3.39i)T+(8.40+21.4i)T2 |
| 29 | 1+(−2.61+5.42i)T+(−18.0−22.6i)T2 |
| 31 | 1+(3.42−5.93i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.38−0.253i)T+(36.5−5.51i)T2 |
| 41 | 1+(−2.18−2.74i)T+(−9.12+39.9i)T2 |
| 43 | 1+(6.60+5.26i)T+(9.56+41.9i)T2 |
| 47 | 1+(1.71−1.59i)T+(3.51−46.8i)T2 |
| 53 | 1+(10.7+0.808i)T+(52.4+7.89i)T2 |
| 59 | 1+(−10.0+3.94i)T+(43.2−40.1i)T2 |
| 61 | 1+(−8.05+0.603i)T+(60.3−9.09i)T2 |
| 67 | 1+(−11.5−6.66i)T+(33.5+58.0i)T2 |
| 71 | 1+(−1.46+0.703i)T+(44.2−55.5i)T2 |
| 73 | 1+(−11.2−10.4i)T+(5.45+72.7i)T2 |
| 79 | 1+(5.25+9.11i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−3.53−0.806i)T+(74.7+36.0i)T2 |
| 89 | 1+(−5.35+1.65i)T+(73.5−50.1i)T2 |
| 97 | 1+9.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.19647822062277766343500405017, −10.05587751981127390315821902056, −9.933196904723043499606871764340, −8.320499638314972131317876793266, −6.98960982007924437417941156160, −6.27886731658997180159061124573, −5.17843682803193248857465203136, −4.21617370190446278153416152903, −2.19156901180089521942046125765, −1.87324056440732973272239883689,
2.09022796974832861510451386876, 3.78599105118565999125549991727, 4.93903306898490690990161792157, 5.42845550981580426938024729183, 6.52475803276192940514151692891, 7.78906710781726003287559279605, 8.639528333566361205855348903102, 9.611404662289265567371609535426, 10.70073825886027327554280662935, 11.42007122807183435190564014940