L(s) = 1 | + (0.866 − 0.5i)5-s + (0.5 + 0.866i)9-s − 2i·13-s + (1.73 + i)17-s + (0.499 − 0.866i)25-s − 2·29-s + (0.866 + 0.499i)45-s + (−1 − 1.73i)65-s + (1.73 + i)73-s + (−0.499 + 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 + 1.73i)109-s + (1.73 − i)117-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)5-s + (0.5 + 0.866i)9-s − 2i·13-s + (1.73 + i)17-s + (0.499 − 0.866i)25-s − 2·29-s + (0.866 + 0.499i)45-s + (−1 − 1.73i)65-s + (1.73 + i)73-s + (−0.499 + 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 + 1.73i)109-s + (1.73 − i)117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.655004245\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.655004245\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + 2iT - T^{2} \) |
| 17 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 2T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-1.73 - i)T + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + 2iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.418574673834591410736381274313, −7.917996879118069482524640694649, −7.36039972503599067515737213706, −6.13807167678287230776968203034, −5.44023125587389568714824232883, −5.23526744417419994762963215355, −3.96959647685308557387790409369, −3.10337384369007198507850649765, −2.03367807888651183556892160943, −1.11831237650297407011394469092,
1.33107996145596575114132561806, 2.16833957810339294480032665375, 3.30912613006016697680267459622, 3.98058925832195806117775795481, 5.04314864506762778018709152836, 5.79345676558268074906752727867, 6.58330617910361011557887571935, 7.08807659222138977817010751552, 7.76691092711698886883391325341, 9.071298528772238584678727792450