L(s) = 1 | + (0.866 − 0.5i)5-s + (0.5 + 0.866i)9-s − 2i·13-s + (1.73 + i)17-s + (0.499 − 0.866i)25-s − 2·29-s + (0.866 + 0.499i)45-s + (−1 − 1.73i)65-s + (1.73 + i)73-s + (−0.499 + 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 + 1.73i)109-s + (1.73 − i)117-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)5-s + (0.5 + 0.866i)9-s − 2i·13-s + (1.73 + i)17-s + (0.499 − 0.866i)25-s − 2·29-s + (0.866 + 0.499i)45-s + (−1 − 1.73i)65-s + (1.73 + i)73-s + (−0.499 + 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 + 1.73i)109-s + (1.73 − i)117-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.922+0.386i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(0.922+0.386i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
0.922+0.386i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(1439,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), 0.922+0.386i)
|
Particular Values
L(21) |
≈ |
1.655004245 |
L(21) |
≈ |
1.655004245 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.866+0.5i)T |
| 7 | 1 |
good | 3 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+2iT−T2 |
| 17 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T2 |
| 29 | 1+2T+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1+2iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.418574673834591410736381274313, −7.917996879118069482524640694649, −7.36039972503599067515737213706, −6.13807167678287230776968203034, −5.44023125587389568714824232883, −5.23526744417419994762963215355, −3.96959647685308557387790409369, −3.10337384369007198507850649765, −2.03367807888651183556892160943, −1.11831237650297407011394469092,
1.33107996145596575114132561806, 2.16833957810339294480032665375, 3.30912613006016697680267459622, 3.98058925832195806117775795481, 5.04314864506762778018709152836, 5.79345676558268074906752727867, 6.58330617910361011557887571935, 7.08807659222138977817010751552, 7.76691092711698886883391325341, 9.071298528772238584678727792450