L(s) = 1 | + (0.866 − 1.5i)3-s + (−0.5 − 0.866i)5-s + (−1 − 1.73i)9-s − 1.73·15-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s − 1.73·27-s − 29-s − 41-s + 1.73·43-s + (−1 + 1.73i)45-s + (0.5 + 0.866i)61-s + (0.866 − 1.5i)67-s − 3·69-s + (0.866 + 1.49i)75-s + ⋯ |
L(s) = 1 | + (0.866 − 1.5i)3-s + (−0.5 − 0.866i)5-s + (−1 − 1.73i)9-s − 1.73·15-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s − 1.73·27-s − 29-s − 41-s + 1.73·43-s + (−1 + 1.73i)45-s + (0.5 + 0.866i)61-s + (0.866 − 1.5i)67-s − 3·69-s + (0.866 + 1.49i)75-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.991+0.126i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.991+0.126i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
−0.991+0.126i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(1439,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), −0.991+0.126i)
|
Particular Values
L(21) |
≈ |
1.304321408 |
L(21) |
≈ |
1.304321408 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.5+0.866i)T |
| 7 | 1 |
good | 3 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1+T+T2 |
| 43 | 1−1.73T+T2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−1.73T+T2 |
| 89 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.079945827083462721473241028423, −7.80580038519904753069600851201, −6.97394946634529699168248529249, −6.29013004248372156181217495616, −5.42594132980299044061662632055, −4.34794937899349079919028252837, −3.55329299812998712318779805701, −2.49569765649978014150772122331, −1.73455605969730029352639096444, −0.63308463080268752261611707418,
2.07508678600864515345624840860, 2.96499161671025764846899260910, 3.74632592457904606770835707131, 4.06738419002790759168722974944, 5.14491971962024509068373537005, 5.86099364536370215759121436522, 6.96955897054420702917668266681, 7.75405688659345585798528270835, 8.255852435382614280078614128719, 9.161695875616002364993737255196