L(s) = 1 | + (0.866 − 1.5i)3-s + (−0.5 − 0.866i)5-s + (−1 − 1.73i)9-s − 1.73·15-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s − 1.73·27-s − 29-s − 41-s + 1.73·43-s + (−1 + 1.73i)45-s + (0.5 + 0.866i)61-s + (0.866 − 1.5i)67-s − 3·69-s + (0.866 + 1.49i)75-s + ⋯ |
L(s) = 1 | + (0.866 − 1.5i)3-s + (−0.5 − 0.866i)5-s + (−1 − 1.73i)9-s − 1.73·15-s + (−0.866 − 1.5i)23-s + (−0.499 + 0.866i)25-s − 1.73·27-s − 29-s − 41-s + 1.73·43-s + (−1 + 1.73i)45-s + (0.5 + 0.866i)61-s + (0.866 − 1.5i)67-s − 3·69-s + (0.866 + 1.49i)75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.304321408\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.304321408\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 - 1.73T + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - 1.73T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.079945827083462721473241028423, −7.80580038519904753069600851201, −6.97394946634529699168248529249, −6.29013004248372156181217495616, −5.42594132980299044061662632055, −4.34794937899349079919028252837, −3.55329299812998712318779805701, −2.49569765649978014150772122331, −1.73455605969730029352639096444, −0.63308463080268752261611707418,
2.07508678600864515345624840860, 2.96499161671025764846899260910, 3.74632592457904606770835707131, 4.06738419002790759168722974944, 5.14491971962024509068373537005, 5.86099364536370215759121436522, 6.96955897054420702917668266681, 7.75405688659345585798528270835, 8.255852435382614280078614128719, 9.161695875616002364993737255196