L(s) = 1 | + (0.130 − 0.991i)5-s + (−0.866 − 0.5i)9-s + (−0.541 − 0.541i)13-s + (−1.78 − 0.478i)17-s + (−0.965 − 0.258i)25-s + 1.41i·29-s + (−1.93 + 0.517i)37-s + 0.765i·41-s + (−0.608 + 0.793i)45-s + (1.36 + 0.366i)53-s + (−1.60 − 0.923i)61-s + (−0.607 + 0.465i)65-s + (0.478 − 1.78i)73-s + (0.499 + 0.866i)81-s + (−0.707 + 1.70i)85-s + ⋯ |
L(s) = 1 | + (0.130 − 0.991i)5-s + (−0.866 − 0.5i)9-s + (−0.541 − 0.541i)13-s + (−1.78 − 0.478i)17-s + (−0.965 − 0.258i)25-s + 1.41i·29-s + (−1.93 + 0.517i)37-s + 0.765i·41-s + (−0.608 + 0.793i)45-s + (1.36 + 0.366i)53-s + (−1.60 − 0.923i)61-s + (−0.607 + 0.465i)65-s + (0.478 − 1.78i)73-s + (0.499 + 0.866i)81-s + (−0.707 + 1.70i)85-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.997+0.0674i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.997+0.0674i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
−0.997+0.0674i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(607,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), −0.997+0.0674i)
|
Particular Values
L(21) |
≈ |
0.4170154786 |
L(21) |
≈ |
0.4170154786 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.130+0.991i)T |
| 7 | 1 |
good | 3 | 1+(0.866+0.5i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.541+0.541i)T+iT2 |
| 17 | 1+(1.78+0.478i)T+(0.866+0.5i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(0.866−0.5i)T2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(1.93−0.517i)T+(0.866−0.5i)T2 |
| 41 | 1−0.765iT−T2 |
| 43 | 1+iT2 |
| 47 | 1+(0.866−0.5i)T2 |
| 53 | 1+(−1.36−0.366i)T+(0.866+0.5i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(1.60+0.923i)T+(0.5+0.866i)T2 |
| 67 | 1+(0.866+0.5i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.478+1.78i)T+(−0.866−0.5i)T2 |
| 79 | 1+(−0.5−0.866i)T2 |
| 83 | 1−iT2 |
| 89 | 1+(−0.923+1.60i)T+(−0.5−0.866i)T2 |
| 97 | 1+(0.541−0.541i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.571487292221963607610546420942, −7.61153878669055602052904754317, −6.76550311167504924857608904930, −6.04901600678810999871483439901, −5.10900887955510954605990467813, −4.75422515140150648110470938914, −3.61860791508256109888457532214, −2.72200932428083174981103315663, −1.65924969479245898213628193011, −0.21094263446537228234223033387,
2.11563345474380374881956938979, 2.44066338251405531653884091878, 3.61524590466107907144262445551, 4.39753602341860972543527169078, 5.38450788781303946361307574258, 6.12351620558467718970969699773, 6.84005416794806478157653269173, 7.39485864727103542173747359851, 8.353694151212366352687423471418, 8.906191500491707193605998719443