Properties

Label 2-3920-140.79-c0-0-6
Degree 22
Conductor 39203920
Sign 0.126+0.991i-0.126 + 0.991i
Analytic cond. 1.956331.95633
Root an. cond. 1.398691.39869
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 1.5i)3-s + (0.866 + 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s i·13-s − 1.73i·15-s + (−0.866 + 0.5i)17-s + (0.499 + 0.866i)25-s + 1.73·27-s + 29-s + (−2.59 − 1.5i)33-s + (−1.5 + 0.866i)39-s + (−1.73 + i)45-s + (0.866 − 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯
L(s)  = 1  + (−0.866 − 1.5i)3-s + (0.866 + 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s i·13-s − 1.73i·15-s + (−0.866 + 0.5i)17-s + (0.499 + 0.866i)25-s + 1.73·27-s + 29-s + (−2.59 − 1.5i)33-s + (−1.5 + 0.866i)39-s + (−1.73 + i)45-s + (0.866 − 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯

Functional equation

Λ(s)=(3920s/2ΓC(s)L(s)=((0.126+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(3920s/2ΓC(s)L(s)=((0.126+0.991i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 39203920    =    245722^{4} \cdot 5 \cdot 7^{2}
Sign: 0.126+0.991i-0.126 + 0.991i
Analytic conductor: 1.956331.95633
Root analytic conductor: 1.398691.39869
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ3920(79,)\chi_{3920} (79, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 3920, ( :0), 0.126+0.991i)(2,\ 3920,\ (\ :0),\ -0.126 + 0.991i)

Particular Values

L(12)L(\frac{1}{2}) \approx 1.1769736631.176973663
L(12)L(\frac12) \approx 1.1769736631.176973663
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(0.8660.5i)T 1 + (-0.866 - 0.5i)T
7 1 1
good3 1+(0.866+1.5i)T+(0.5+0.866i)T2 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2}
11 1+(1.5+0.866i)T+(0.50.866i)T2 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2}
13 1+iTT2 1 + iT - T^{2}
17 1+(0.8660.5i)T+(0.50.866i)T2 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2}
19 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
23 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
29 1T+T2 1 - T + T^{2}
31 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
37 1+(0.5+0.866i)T2 1 + (0.5 + 0.866i)T^{2}
41 1+T2 1 + T^{2}
43 1+T2 1 + T^{2}
47 1+(0.866+1.5i)T+(0.50.866i)T2 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2}
53 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
59 1+(0.50.866i)T2 1 + (0.5 - 0.866i)T^{2}
61 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
67 1+(0.5+0.866i)T2 1 + (-0.5 + 0.866i)T^{2}
71 1T2 1 - T^{2}
73 1+(1.73+i)T+(0.50.866i)T2 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2}
79 1+(1.5+0.866i)T+(0.5+0.866i)T2 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2}
83 1+T2 1 + T^{2}
89 1+(0.50.866i)T2 1 + (-0.5 - 0.866i)T^{2}
97 1+iTT2 1 + iT - T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.422560090860266100169737297152, −7.47790620575857058783219289449, −6.74820330966894489907027367120, −6.29873762451492276310206779757, −5.84493380529083506430228611510, −5.02876880062995945555256154068, −3.69727127327979788426684530546, −2.63846362083070419968824588903, −1.73596519740185243795890036969, −0.854098872692307461386070715311, 1.28252119891128638503113506162, 2.49155783054687746995112091030, 3.88288851643952576735041598032, 4.45816290496048886686061733694, 4.86385865335616126534606945838, 5.82269870666592923038987107978, 6.47646797089000081532844112003, 7.00781082583790177782876355732, 8.563450192513929530138433165883, 9.146701213304379015003254928309

Graph of the ZZ-function along the critical line