Properties

Label 2-3920-140.79-c0-0-6
Degree $2$
Conductor $3920$
Sign $-0.126 + 0.991i$
Analytic cond. $1.95633$
Root an. cond. $1.39869$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 1.5i)3-s + (0.866 + 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s i·13-s − 1.73i·15-s + (−0.866 + 0.5i)17-s + (0.499 + 0.866i)25-s + 1.73·27-s + 29-s + (−2.59 − 1.5i)33-s + (−1.5 + 0.866i)39-s + (−1.73 + i)45-s + (0.866 − 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯
L(s)  = 1  + (−0.866 − 1.5i)3-s + (0.866 + 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s i·13-s − 1.73i·15-s + (−0.866 + 0.5i)17-s + (0.499 + 0.866i)25-s + 1.73·27-s + 29-s + (−2.59 − 1.5i)33-s + (−1.5 + 0.866i)39-s + (−1.73 + i)45-s + (0.866 − 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3920\)    =    \(2^{4} \cdot 5 \cdot 7^{2}\)
Sign: $-0.126 + 0.991i$
Analytic conductor: \(1.95633\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3920} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3920,\ (\ :0),\ -0.126 + 0.991i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.176973663\)
\(L(\frac12)\) \(\approx\) \(1.176973663\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.866 - 0.5i)T \)
7 \( 1 \)
good3 \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \)
13 \( 1 + iT - T^{2} \)
17 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
19 \( 1 + (0.5 + 0.866i)T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 - T + T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + (0.5 + 0.866i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \)
53 \( 1 + (0.5 - 0.866i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (-0.5 + 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \)
79 \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \)
83 \( 1 + T^{2} \)
89 \( 1 + (-0.5 - 0.866i)T^{2} \)
97 \( 1 + iT - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.422560090860266100169737297152, −7.47790620575857058783219289449, −6.74820330966894489907027367120, −6.29873762451492276310206779757, −5.84493380529083506430228611510, −5.02876880062995945555256154068, −3.69727127327979788426684530546, −2.63846362083070419968824588903, −1.73596519740185243795890036969, −0.854098872692307461386070715311, 1.28252119891128638503113506162, 2.49155783054687746995112091030, 3.88288851643952576735041598032, 4.45816290496048886686061733694, 4.86385865335616126534606945838, 5.82269870666592923038987107978, 6.47646797089000081532844112003, 7.00781082583790177782876355732, 8.563450192513929530138433165883, 9.146701213304379015003254928309

Graph of the $Z$-function along the critical line