L(s) = 1 | + (−0.866 − 1.5i)3-s + (0.866 + 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s − i·13-s − 1.73i·15-s + (−0.866 + 0.5i)17-s + (0.499 + 0.866i)25-s + 1.73·27-s + 29-s + (−2.59 − 1.5i)33-s + (−1.5 + 0.866i)39-s + (−1.73 + i)45-s + (0.866 − 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯ |
L(s) = 1 | + (−0.866 − 1.5i)3-s + (0.866 + 0.5i)5-s + (−1 + 1.73i)9-s + (1.5 − 0.866i)11-s − i·13-s − 1.73i·15-s + (−0.866 + 0.5i)17-s + (0.499 + 0.866i)25-s + 1.73·27-s + 29-s + (−2.59 − 1.5i)33-s + (−1.5 + 0.866i)39-s + (−1.73 + i)45-s + (0.866 − 1.5i)47-s + (1.5 + 0.866i)51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.126 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.176973663\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.176973663\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.422560090860266100169737297152, −7.47790620575857058783219289449, −6.74820330966894489907027367120, −6.29873762451492276310206779757, −5.84493380529083506430228611510, −5.02876880062995945555256154068, −3.69727127327979788426684530546, −2.63846362083070419968824588903, −1.73596519740185243795890036969, −0.854098872692307461386070715311,
1.28252119891128638503113506162, 2.49155783054687746995112091030, 3.88288851643952576735041598032, 4.45816290496048886686061733694, 4.86385865335616126534606945838, 5.82269870666592923038987107978, 6.47646797089000081532844112003, 7.00781082583790177782876355732, 8.563450192513929530138433165883, 9.146701213304379015003254928309