L(s) = 1 | + (−0.866 − 0.5i)5-s + (0.5 − 0.866i)9-s − 2i·13-s + (−1.73 + i)17-s + (0.499 + 0.866i)25-s − 2·29-s + (−0.866 + 0.499i)45-s + (−1 + 1.73i)65-s + (−1.73 + i)73-s + (−0.499 − 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 − 1.73i)109-s + (−1.73 − i)117-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)5-s + (0.5 − 0.866i)9-s − 2i·13-s + (−1.73 + i)17-s + (0.499 + 0.866i)25-s − 2·29-s + (−0.866 + 0.499i)45-s + (−1 + 1.73i)65-s + (−1.73 + i)73-s + (−0.499 − 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 − 1.73i)109-s + (−1.73 − i)117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5248849586\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5248849586\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 2iT - T^{2} \) |
| 17 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 2T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + 2iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.378293272833232963978055866766, −7.61581453727304512655077896812, −7.00501857279393429120269258992, −6.04344752980260771131176227772, −5.37285176903902925405164078577, −4.34068765620422180521038197507, −3.80565058961165716497140631245, −2.95879098209780670412631301507, −1.59431164987275454556467023760, −0.28549954460240961735295879634,
1.81962186789723008512524606350, 2.50630904097057243613620254514, 3.78714565461400642748245527060, 4.38458918026463373274329170753, 4.96227370926182661166792839586, 6.22215907784131795899957313471, 7.06740128374258918493847109610, 7.22820608677364547537620961955, 8.166481060483467310752522826861, 9.089526576797051116936218407792