L(s) = 1 | + (−0.866 − 0.5i)5-s + (0.5 − 0.866i)9-s − 2i·13-s + (−1.73 + i)17-s + (0.499 + 0.866i)25-s − 2·29-s + (−0.866 + 0.499i)45-s + (−1 + 1.73i)65-s + (−1.73 + i)73-s + (−0.499 − 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 − 1.73i)109-s + (−1.73 − i)117-s + ⋯ |
L(s) = 1 | + (−0.866 − 0.5i)5-s + (0.5 − 0.866i)9-s − 2i·13-s + (−1.73 + i)17-s + (0.499 + 0.866i)25-s − 2·29-s + (−0.866 + 0.499i)45-s + (−1 + 1.73i)65-s + (−1.73 + i)73-s + (−0.499 − 0.866i)81-s + 1.99·85-s − 2i·97-s + (−1 − 1.73i)109-s + (−1.73 − i)117-s + ⋯ |
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.922+0.386i)Λ(1−s)
Λ(s)=(=(3920s/2ΓC(s)L(s)(−0.922+0.386i)Λ(1−s)
Degree: |
2 |
Conductor: |
3920
= 24⋅5⋅72
|
Sign: |
−0.922+0.386i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3920(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3920, ( :0), −0.922+0.386i)
|
Particular Values
L(21) |
≈ |
0.5248849586 |
L(21) |
≈ |
0.5248849586 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.866+0.5i)T |
| 7 | 1 |
good | 3 | 1+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+2iT−T2 |
| 17 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1+2T+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5−0.866i)T2 |
| 97 | 1+2iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.378293272833232963978055866766, −7.61581453727304512655077896812, −7.00501857279393429120269258992, −6.04344752980260771131176227772, −5.37285176903902925405164078577, −4.34068765620422180521038197507, −3.80565058961165716497140631245, −2.95879098209780670412631301507, −1.59431164987275454556467023760, −0.28549954460240961735295879634,
1.81962186789723008512524606350, 2.50630904097057243613620254514, 3.78714565461400642748245527060, 4.38458918026463373274329170753, 4.96227370926182661166792839586, 6.22215907784131795899957313471, 7.06740128374258918493847109610, 7.22820608677364547537620961955, 8.166481060483467310752522826861, 9.089526576797051116936218407792