L(s) = 1 | + 12·5-s + 26·7-s + 11·11-s − 34·13-s + 126·17-s + 110·19-s − 180·23-s + 19·25-s − 18·29-s − 292·31-s + 312·35-s − 238·37-s + 426·41-s + 146·43-s + 528·47-s + 333·49-s + 408·53-s + 132·55-s + 324·59-s − 550·61-s − 408·65-s + 824·67-s + 552·71-s − 850·73-s + 286·77-s + 866·79-s − 660·83-s + ⋯ |
L(s) = 1 | + 1.07·5-s + 1.40·7-s + 0.301·11-s − 0.725·13-s + 1.79·17-s + 1.32·19-s − 1.63·23-s + 0.151·25-s − 0.115·29-s − 1.69·31-s + 1.50·35-s − 1.05·37-s + 1.62·41-s + 0.517·43-s + 1.63·47-s + 0.970·49-s + 1.05·53-s + 0.323·55-s + 0.714·59-s − 1.15·61-s − 0.778·65-s + 1.50·67-s + 0.922·71-s − 1.36·73-s + 0.423·77-s + 1.23·79-s − 0.872·83-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(396s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.826973034 |
L(21) |
≈ |
2.826973034 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1−pT |
good | 5 | 1−12T+p3T2 |
| 7 | 1−26T+p3T2 |
| 13 | 1+34T+p3T2 |
| 17 | 1−126T+p3T2 |
| 19 | 1−110T+p3T2 |
| 23 | 1+180T+p3T2 |
| 29 | 1+18T+p3T2 |
| 31 | 1+292T+p3T2 |
| 37 | 1+238T+p3T2 |
| 41 | 1−426T+p3T2 |
| 43 | 1−146T+p3T2 |
| 47 | 1−528T+p3T2 |
| 53 | 1−408T+p3T2 |
| 59 | 1−324T+p3T2 |
| 61 | 1+550T+p3T2 |
| 67 | 1−824T+p3T2 |
| 71 | 1−552T+p3T2 |
| 73 | 1+850T+p3T2 |
| 79 | 1−866T+p3T2 |
| 83 | 1+660T+p3T2 |
| 89 | 1−768T+p3T2 |
| 97 | 1+286T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78088469528999660045500502690, −9.900247032872803534339008285340, −9.228631475715792278703973366914, −7.930120460337533924489539798647, −7.34181109182134643110366964987, −5.66307497167811783470324826673, −5.37736989611351380281319731735, −3.89401589279563103810546676562, −2.26441803689400852130289245883, −1.25386749019618991502257910908,
1.25386749019618991502257910908, 2.26441803689400852130289245883, 3.89401589279563103810546676562, 5.37736989611351380281319731735, 5.66307497167811783470324826673, 7.34181109182134643110366964987, 7.930120460337533924489539798647, 9.228631475715792278703973366914, 9.900247032872803534339008285340, 10.78088469528999660045500502690