L(s) = 1 | + (10.2 + 7.42i)5-s + (−9.75 + 30.0i)7-s + (13.1 + 34.0i)11-s + (−3.98 + 2.89i)13-s + (−36.6 − 26.5i)17-s + (−10.6 − 32.6i)19-s − 206.·23-s + (10.6 + 32.7i)25-s + (11.0 − 34.1i)29-s + (18.0 − 13.0i)31-s + (−322. + 234. i)35-s + (58.9 − 181. i)37-s + (18.5 + 56.9i)41-s + 334.·43-s + (101. + 313. i)47-s + ⋯ |
L(s) = 1 | + (0.913 + 0.663i)5-s + (−0.526 + 1.62i)7-s + (0.360 + 0.932i)11-s + (−0.0850 + 0.0617i)13-s + (−0.522 − 0.379i)17-s + (−0.128 − 0.394i)19-s − 1.87·23-s + (0.0851 + 0.262i)25-s + (0.0710 − 0.218i)29-s + (0.104 − 0.0758i)31-s + (−1.55 + 1.13i)35-s + (0.262 − 0.806i)37-s + (0.0705 + 0.217i)41-s + 1.18·43-s + (0.315 + 0.971i)47-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(−0.826−0.562i)Λ(4−s)
Λ(s)=(=(396s/2ΓC(s+3/2)L(s)(−0.826−0.562i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
−0.826−0.562i
|
Analytic conductor: |
23.3647 |
Root analytic conductor: |
4.83371 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :3/2), −0.826−0.562i)
|
Particular Values
L(2) |
≈ |
1.439527045 |
L(21) |
≈ |
1.439527045 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−13.1−34.0i)T |
good | 5 | 1+(−10.2−7.42i)T+(38.6+118.i)T2 |
| 7 | 1+(9.75−30.0i)T+(−277.−201.i)T2 |
| 13 | 1+(3.98−2.89i)T+(678.−2.08e3i)T2 |
| 17 | 1+(36.6+26.5i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(10.6+32.6i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1+206.T+1.21e4T2 |
| 29 | 1+(−11.0+34.1i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−18.0+13.0i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(−58.9+181.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(−18.5−56.9i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−334.T+7.95e4T2 |
| 47 | 1+(−101.−313.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(296.−215.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(207.−637.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−35.5−25.8i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−673.T+3.00e5T2 |
| 71 | 1+(738.+536.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(364.−1.12e3i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(566.−411.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(−391.−284.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+1.22e3T+7.04e5T2 |
| 97 | 1+(−806.+586.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29364302435595974129230947527, −10.06535246661738966420755231756, −9.519337802615920262399636813129, −8.733910342516855825366200126613, −7.37537727294118869749588902251, −6.23707265187408196409242846922, −5.80832049156531593859249742643, −4.37864285256927220865548450161, −2.67486640682902430245019262617, −2.07982617699353144265824181926,
0.45588299706617171934603870587, 1.71196006007532334526287085813, 3.51064696333864638028004486490, 4.43775761865380178030613683034, 5.82886514713633352439434809346, 6.53523863468216408748244667264, 7.73644820392547710895181793892, 8.713420830487203927845618505251, 9.767500945531203463503843102990, 10.31272495381004476962095552226