L(s) = 1 | + (−1.60 − 1.16i)5-s + (3.78 − 11.6i)7-s + (8.21 + 35.5i)11-s + (5.26 − 3.82i)13-s + (62.9 + 45.7i)17-s + (−28.2 − 86.9i)19-s + 20.2·23-s + (−37.4 − 115. i)25-s + (23.5 − 72.5i)29-s + (92.8 − 67.4i)31-s + (−19.6 + 14.2i)35-s + (27.6 − 85.0i)37-s + (−30.4 − 93.7i)41-s + 488.·43-s + (−33.0 − 101. i)47-s + ⋯ |
L(s) = 1 | + (−0.143 − 0.104i)5-s + (0.204 − 0.629i)7-s + (0.225 + 0.974i)11-s + (0.112 − 0.0816i)13-s + (0.898 + 0.652i)17-s + (−0.341 − 1.05i)19-s + 0.183·23-s + (−0.299 − 0.921i)25-s + (0.151 − 0.464i)29-s + (0.538 − 0.390i)31-s + (−0.0950 + 0.0690i)35-s + (0.122 − 0.377i)37-s + (−0.116 − 0.357i)41-s + 1.73·43-s + (−0.102 − 0.315i)47-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.739+0.673i)Λ(4−s)
Λ(s)=(=(396s/2ΓC(s+3/2)L(s)(0.739+0.673i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.739+0.673i
|
Analytic conductor: |
23.3647 |
Root analytic conductor: |
4.83371 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :3/2), 0.739+0.673i)
|
Particular Values
L(2) |
≈ |
1.859343215 |
L(21) |
≈ |
1.859343215 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−8.21−35.5i)T |
good | 5 | 1+(1.60+1.16i)T+(38.6+118.i)T2 |
| 7 | 1+(−3.78+11.6i)T+(−277.−201.i)T2 |
| 13 | 1+(−5.26+3.82i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−62.9−45.7i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(28.2+86.9i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−20.2T+1.21e4T2 |
| 29 | 1+(−23.5+72.5i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−92.8+67.4i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(−27.6+85.0i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(30.4+93.7i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−488.T+7.95e4T2 |
| 47 | 1+(33.0+101.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(−447.+324.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−52.3+161.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−235.−170.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−107.T+3.00e5T2 |
| 71 | 1+(589.+428.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−110.+341.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(−413.+300.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(515.+374.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1−830.T+7.04e5T2 |
| 97 | 1+(642.−467.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64698210090855686028115557192, −9.977941697919814988837592126884, −8.931657535555462430069002173338, −7.88021338924552007372743118742, −7.10955616820058866935952901312, −6.01324774474976655173638878206, −4.70078501917344611261415534163, −3.88481125281832366569013716494, −2.29489334062964043914298022113, −0.76131441691442274223936093154,
1.15114567232830177157069638460, 2.77495908305154234406702210301, 3.87256049378878329032139221981, 5.32119394813441900224262993848, 6.05438210538410741102650651704, 7.30413103372518953802099801891, 8.279756740225235643700434412514, 9.055329774408811844430255306596, 10.07751344902050476034833667059, 11.07537996400023164646926714509