L(s) = 1 | + (−1.30 + 0.951i)5-s + (0.0729 + 0.224i)7-s + (0.809 + 3.21i)11-s + (3.42 + 2.48i)13-s + (−0.118 + 0.0857i)17-s + (−2.11 + 6.51i)19-s + 5·23-s + (−0.736 + 2.26i)25-s + (−0.618 − 1.90i)29-s + (−2.73 − 1.98i)31-s + (−0.309 − 0.224i)35-s + (0.690 + 2.12i)37-s + (2.69 − 8.28i)41-s − 2.52·43-s + (−2.95 + 9.09i)47-s + ⋯ |
L(s) = 1 | + (−0.585 + 0.425i)5-s + (0.0275 + 0.0848i)7-s + (0.243 + 0.969i)11-s + (0.950 + 0.690i)13-s + (−0.0286 + 0.0207i)17-s + (−0.485 + 1.49i)19-s + 1.04·23-s + (−0.147 + 0.453i)25-s + (−0.114 − 0.353i)29-s + (−0.491 − 0.357i)31-s + (−0.0522 − 0.0379i)35-s + (0.113 + 0.349i)37-s + (0.420 − 1.29i)41-s − 0.385·43-s + (−0.431 + 1.32i)47-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.350−0.936i)Λ(2−s)
Λ(s)=(=(396s/2ΓC(s+1/2)L(s)(0.350−0.936i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.350−0.936i
|
Analytic conductor: |
3.16207 |
Root analytic conductor: |
1.77822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :1/2), 0.350−0.936i)
|
Particular Values
L(1) |
≈ |
0.974536+0.675816i |
L(21) |
≈ |
0.974536+0.675816i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−0.809−3.21i)T |
good | 5 | 1+(1.30−0.951i)T+(1.54−4.75i)T2 |
| 7 | 1+(−0.0729−0.224i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−3.42−2.48i)T+(4.01+12.3i)T2 |
| 17 | 1+(0.118−0.0857i)T+(5.25−16.1i)T2 |
| 19 | 1+(2.11−6.51i)T+(−15.3−11.1i)T2 |
| 23 | 1−5T+23T2 |
| 29 | 1+(0.618+1.90i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.73+1.98i)T+(9.57+29.4i)T2 |
| 37 | 1+(−0.690−2.12i)T+(−29.9+21.7i)T2 |
| 41 | 1+(−2.69+8.28i)T+(−33.1−24.0i)T2 |
| 43 | 1+2.52T+43T2 |
| 47 | 1+(2.95−9.09i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−5.35−3.88i)T+(16.3+50.4i)T2 |
| 59 | 1+(3.64+11.2i)T+(−47.7+34.6i)T2 |
| 61 | 1+(−8.78+6.37i)T+(18.8−58.0i)T2 |
| 67 | 1+4.38T+67T2 |
| 71 | 1+(11.7−8.55i)T+(21.9−67.5i)T2 |
| 73 | 1+(4.85+14.9i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−7.04−5.11i)T+(24.4+75.1i)T2 |
| 83 | 1+(1.42−1.03i)T+(25.6−78.9i)T2 |
| 89 | 1−5.18T+89T2 |
| 97 | 1+(12.1+8.83i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.42779751903833990524404918715, −10.68124137215923633698081461041, −9.644119042258777059322869283600, −8.715199407439125973517940901249, −7.67347735837214704393782417591, −6.84844712028637821353997263443, −5.80361438710434876042063661569, −4.37647637538400691206784596825, −3.50423525813854271388238601978, −1.80853942679714421666427884745,
0.842577288317813414605117291850, 2.95794669535776452074243716417, 4.08871117031297673956140307819, 5.24666660033984875796236567599, 6.35431753915924871455654508631, 7.42930384808506014445648346910, 8.600570512594095172804076570627, 8.907206882097210255747216555563, 10.41798327317094666871518986704, 11.15384611041681204722246047447