L(s) = 1 | + (13.7 − 9.98i)5-s + (1.14 + 3.53i)7-s + (35.9 − 6.03i)11-s + (50.6 + 36.8i)13-s + (−67.4 + 49.0i)17-s + (15.3 − 47.3i)19-s + 42.7·23-s + (50.6 − 155. i)25-s + (−47.8 − 147. i)29-s + (163. + 118. i)31-s + (51.1 + 37.1i)35-s + (29.6 + 91.2i)37-s + (139. − 428. i)41-s − 343.·43-s + (−121. + 373. i)47-s + ⋯ |
L(s) = 1 | + (1.22 − 0.893i)5-s + (0.0620 + 0.190i)7-s + (0.986 − 0.165i)11-s + (1.08 + 0.785i)13-s + (−0.962 + 0.699i)17-s + (0.185 − 0.571i)19-s + 0.387·23-s + (0.404 − 1.24i)25-s + (−0.306 − 0.943i)29-s + (0.947 + 0.688i)31-s + (0.246 + 0.179i)35-s + (0.131 + 0.405i)37-s + (0.529 − 1.63i)41-s − 1.21·43-s + (−0.376 + 1.15i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.905 + 0.424i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.905 + 0.424i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.655067555\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.655067555\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-35.9 + 6.03i)T \) |
good | 5 | \( 1 + (-13.7 + 9.98i)T + (38.6 - 118. i)T^{2} \) |
| 7 | \( 1 + (-1.14 - 3.53i)T + (-277. + 201. i)T^{2} \) |
| 13 | \( 1 + (-50.6 - 36.8i)T + (678. + 2.08e3i)T^{2} \) |
| 17 | \( 1 + (67.4 - 49.0i)T + (1.51e3 - 4.67e3i)T^{2} \) |
| 19 | \( 1 + (-15.3 + 47.3i)T + (-5.54e3 - 4.03e3i)T^{2} \) |
| 23 | \( 1 - 42.7T + 1.21e4T^{2} \) |
| 29 | \( 1 + (47.8 + 147. i)T + (-1.97e4 + 1.43e4i)T^{2} \) |
| 31 | \( 1 + (-163. - 118. i)T + (9.20e3 + 2.83e4i)T^{2} \) |
| 37 | \( 1 + (-29.6 - 91.2i)T + (-4.09e4 + 2.97e4i)T^{2} \) |
| 41 | \( 1 + (-139. + 428. i)T + (-5.57e4 - 4.05e4i)T^{2} \) |
| 43 | \( 1 + 343.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (121. - 373. i)T + (-8.39e4 - 6.10e4i)T^{2} \) |
| 53 | \( 1 + (155. + 113. i)T + (4.60e4 + 1.41e5i)T^{2} \) |
| 59 | \( 1 + (-163. - 503. i)T + (-1.66e5 + 1.20e5i)T^{2} \) |
| 61 | \( 1 + (-273. + 198. i)T + (7.01e4 - 2.15e5i)T^{2} \) |
| 67 | \( 1 - 831.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-546. + 397. i)T + (1.10e5 - 3.40e5i)T^{2} \) |
| 73 | \( 1 + (375. + 1.15e3i)T + (-3.14e5 + 2.28e5i)T^{2} \) |
| 79 | \( 1 + (-867. - 630. i)T + (1.52e5 + 4.68e5i)T^{2} \) |
| 83 | \( 1 + (65.4 - 47.5i)T + (1.76e5 - 5.43e5i)T^{2} \) |
| 89 | \( 1 - 30.9T + 7.04e5T^{2} \) |
| 97 | \( 1 + (73.7 + 53.5i)T + (2.82e5 + 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83360021716887366277270494519, −9.651574286157546454806131340180, −8.987477115217376092559460972881, −8.432943406430149982162140194770, −6.68178629006389395717312831916, −6.11329511841459377378808701068, −4.97943970963629531033501170766, −3.90848551426126947406928322720, −2.12333709562105516026266869217, −1.12105785736983865040003794802,
1.26572061257292023467256296032, 2.58858253386865127187929959712, 3.77658799111766520498093738315, 5.27305910877092778261403336806, 6.33604076593489567960417299618, 6.84771376418211397237195691894, 8.217314869105359288318075677097, 9.304347156860848764044655064374, 10.00073308609013382348173306448, 10.90532425270791541765516366371