L(s) = 1 | + (13.7 − 9.98i)5-s + (1.14 + 3.53i)7-s + (35.9 − 6.03i)11-s + (50.6 + 36.8i)13-s + (−67.4 + 49.0i)17-s + (15.3 − 47.3i)19-s + 42.7·23-s + (50.6 − 155. i)25-s + (−47.8 − 147. i)29-s + (163. + 118. i)31-s + (51.1 + 37.1i)35-s + (29.6 + 91.2i)37-s + (139. − 428. i)41-s − 343.·43-s + (−121. + 373. i)47-s + ⋯ |
L(s) = 1 | + (1.22 − 0.893i)5-s + (0.0620 + 0.190i)7-s + (0.986 − 0.165i)11-s + (1.08 + 0.785i)13-s + (−0.962 + 0.699i)17-s + (0.185 − 0.571i)19-s + 0.387·23-s + (0.404 − 1.24i)25-s + (−0.306 − 0.943i)29-s + (0.947 + 0.688i)31-s + (0.246 + 0.179i)35-s + (0.131 + 0.405i)37-s + (0.529 − 1.63i)41-s − 1.21·43-s + (−0.376 + 1.15i)47-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.905+0.424i)Λ(4−s)
Λ(s)=(=(396s/2ΓC(s+3/2)L(s)(0.905+0.424i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.905+0.424i
|
Analytic conductor: |
23.3647 |
Root analytic conductor: |
4.83371 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :3/2), 0.905+0.424i)
|
Particular Values
L(2) |
≈ |
2.655067555 |
L(21) |
≈ |
2.655067555 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−35.9+6.03i)T |
good | 5 | 1+(−13.7+9.98i)T+(38.6−118.i)T2 |
| 7 | 1+(−1.14−3.53i)T+(−277.+201.i)T2 |
| 13 | 1+(−50.6−36.8i)T+(678.+2.08e3i)T2 |
| 17 | 1+(67.4−49.0i)T+(1.51e3−4.67e3i)T2 |
| 19 | 1+(−15.3+47.3i)T+(−5.54e3−4.03e3i)T2 |
| 23 | 1−42.7T+1.21e4T2 |
| 29 | 1+(47.8+147.i)T+(−1.97e4+1.43e4i)T2 |
| 31 | 1+(−163.−118.i)T+(9.20e3+2.83e4i)T2 |
| 37 | 1+(−29.6−91.2i)T+(−4.09e4+2.97e4i)T2 |
| 41 | 1+(−139.+428.i)T+(−5.57e4−4.05e4i)T2 |
| 43 | 1+343.T+7.95e4T2 |
| 47 | 1+(121.−373.i)T+(−8.39e4−6.10e4i)T2 |
| 53 | 1+(155.+113.i)T+(4.60e4+1.41e5i)T2 |
| 59 | 1+(−163.−503.i)T+(−1.66e5+1.20e5i)T2 |
| 61 | 1+(−273.+198.i)T+(7.01e4−2.15e5i)T2 |
| 67 | 1−831.T+3.00e5T2 |
| 71 | 1+(−546.+397.i)T+(1.10e5−3.40e5i)T2 |
| 73 | 1+(375.+1.15e3i)T+(−3.14e5+2.28e5i)T2 |
| 79 | 1+(−867.−630.i)T+(1.52e5+4.68e5i)T2 |
| 83 | 1+(65.4−47.5i)T+(1.76e5−5.43e5i)T2 |
| 89 | 1−30.9T+7.04e5T2 |
| 97 | 1+(73.7+53.5i)T+(2.82e5+8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83360021716887366277270494519, −9.651574286157546454806131340180, −8.987477115217376092559460972881, −8.432943406430149982162140194770, −6.68178629006389395717312831916, −6.11329511841459377378808701068, −4.97943970963629531033501170766, −3.90848551426126947406928322720, −2.12333709562105516026266869217, −1.12105785736983865040003794802,
1.26572061257292023467256296032, 2.58858253386865127187929959712, 3.77658799111766520498093738315, 5.27305910877092778261403336806, 6.33604076593489567960417299618, 6.84771376418211397237195691894, 8.217314869105359288318075677097, 9.304347156860848764044655064374, 10.00073308609013382348173306448, 10.90532425270791541765516366371