L(s) = 1 | + (−0.190 − 0.587i)5-s + (−2.30 − 1.67i)7-s + (3.23 − 0.726i)11-s + (1.42 − 4.39i)13-s + (−1.42 − 4.39i)17-s + (2.30 − 1.67i)19-s − 6.47·23-s + (3.73 − 2.71i)25-s + (5.16 + 3.75i)29-s + (−1.80 + 5.56i)31-s + (−0.545 + 1.67i)35-s + (−3.92 − 2.85i)37-s + (5.16 − 3.75i)41-s + (2.92 − 2.12i)47-s + (0.354 + 1.08i)49-s + ⋯ |
L(s) = 1 | + (−0.0854 − 0.262i)5-s + (−0.872 − 0.634i)7-s + (0.975 − 0.219i)11-s + (0.395 − 1.21i)13-s + (−0.346 − 1.06i)17-s + (0.529 − 0.384i)19-s − 1.34·23-s + (0.747 − 0.542i)25-s + (0.958 + 0.696i)29-s + (−0.324 + 0.999i)31-s + (−0.0921 + 0.283i)35-s + (−0.645 − 0.469i)37-s + (0.806 − 0.585i)41-s + (0.426 − 0.310i)47-s + (0.0505 + 0.155i)49-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.263+0.964i)Λ(2−s)
Λ(s)=(=(396s/2ΓC(s+1/2)L(s)(0.263+0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.263+0.964i
|
Analytic conductor: |
3.16207 |
Root analytic conductor: |
1.77822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :1/2), 0.263+0.964i)
|
Particular Values
L(1) |
≈ |
0.936745−0.715215i |
L(21) |
≈ |
0.936745−0.715215i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+(−3.23+0.726i)T |
good | 5 | 1+(0.190+0.587i)T+(−4.04+2.93i)T2 |
| 7 | 1+(2.30+1.67i)T+(2.16+6.65i)T2 |
| 13 | 1+(−1.42+4.39i)T+(−10.5−7.64i)T2 |
| 17 | 1+(1.42+4.39i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−2.30+1.67i)T+(5.87−18.0i)T2 |
| 23 | 1+6.47T+23T2 |
| 29 | 1+(−5.16−3.75i)T+(8.96+27.5i)T2 |
| 31 | 1+(1.80−5.56i)T+(−25.0−18.2i)T2 |
| 37 | 1+(3.92+2.85i)T+(11.4+35.1i)T2 |
| 41 | 1+(−5.16+3.75i)T+(12.6−38.9i)T2 |
| 43 | 1+43T2 |
| 47 | 1+(−2.92+2.12i)T+(14.5−44.6i)T2 |
| 53 | 1+(2.19−6.74i)T+(−42.8−31.1i)T2 |
| 59 | 1+(8.16+5.93i)T+(18.2+56.1i)T2 |
| 61 | 1+(−1.42−4.39i)T+(−49.3+35.8i)T2 |
| 67 | 1+4.94T+67T2 |
| 71 | 1+(−2.66−8.19i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−9.78−7.10i)T+(22.5+69.4i)T2 |
| 79 | 1+(4.28−13.1i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−4.95−15.2i)T+(−67.1+48.7i)T2 |
| 89 | 1−8.47T+89T2 |
| 97 | 1+(−1.71+5.29i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.99417444892206014286435774181, −10.20903352663760162406501097539, −9.289469587024546057478928894591, −8.431931385448368413251499561505, −7.23201979188717192383296450109, −6.45703604990058265734393677413, −5.27926744391565641597606008954, −3.98733671883468574370914844850, −2.96814174865763253975950217129, −0.816348048498922925798932086761,
1.88735767451518521078901349659, 3.43363927833340893459878816808, 4.40863786205955297066007152770, 6.15560255631355031775978571589, 6.42474598914076281619693840328, 7.77156249221346300027204044322, 8.950218425281242666285468341482, 9.513338313352230665340927047368, 10.53446208597995971564489562773, 11.67459643263741548990241090125