L(s) = 1 | + (1.40 + 0.126i)2-s + (1.96 + 0.355i)4-s + 0.450i·5-s + 4.60i·7-s + (2.72 + 0.749i)8-s + (−0.0568 + 0.635i)10-s + 11-s − 5.39·13-s + (−0.580 + 6.48i)14-s + (3.74 + 1.39i)16-s − 5.39i·17-s − 4.38i·19-s + (−0.160 + 0.887i)20-s + (1.40 + 0.126i)22-s + 6.03·23-s + ⋯ |
L(s) = 1 | + (0.996 + 0.0892i)2-s + (0.984 + 0.177i)4-s + 0.201i·5-s + 1.73i·7-s + (0.964 + 0.264i)8-s + (−0.0179 + 0.200i)10-s + 0.301·11-s − 1.49·13-s + (−0.155 + 1.73i)14-s + (0.936 + 0.349i)16-s − 1.30i·17-s − 1.00i·19-s + (−0.0358 + 0.198i)20-s + (0.300 + 0.0269i)22-s + 1.25·23-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.713−0.700i)Λ(2−s)
Λ(s)=(=(396s/2ΓC(s+1/2)L(s)(0.713−0.700i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.713−0.700i
|
Analytic conductor: |
3.16207 |
Root analytic conductor: |
1.77822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :1/2), 0.713−0.700i)
|
Particular Values
L(1) |
≈ |
2.28581+0.935108i |
L(21) |
≈ |
2.28581+0.935108i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.40−0.126i)T |
| 3 | 1 |
| 11 | 1−T |
good | 5 | 1−0.450iT−5T2 |
| 7 | 1−4.60iT−7T2 |
| 13 | 1+5.39T+13T2 |
| 17 | 1+5.39iT−17T2 |
| 19 | 1+4.38iT−19T2 |
| 23 | 1−6.03T+23T2 |
| 29 | 1+3.31iT−29T2 |
| 31 | 1−4.57iT−31T2 |
| 37 | 1+6.27T+37T2 |
| 41 | 1+11.2iT−41T2 |
| 43 | 1−0.650iT−43T2 |
| 47 | 1+5.79T+47T2 |
| 53 | 1+1.46iT−53T2 |
| 59 | 1+4.71T+59T2 |
| 61 | 1−1.28T+61T2 |
| 67 | 1−6.54iT−67T2 |
| 71 | 1+4.27T+71T2 |
| 73 | 1−9.86T+73T2 |
| 79 | 1+8.84iT−79T2 |
| 83 | 1−0.627T+83T2 |
| 89 | 1−10.6iT−89T2 |
| 97 | 1−1.59T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.78422280892013307963503863133, −10.80204686157535179213423947901, −9.489965416818222679094810786868, −8.727621305546165109267125126324, −7.29209903362016011315648734104, −6.64773471608812130153214171030, −5.24265742128131439296829156000, −4.94251591409866345626461134012, −3.03052273869441256492680415119, −2.36392490154396051482374813492,
1.44488150154958125321263598547, 3.24424111703717207463844384646, 4.25749939258322920799666565170, 5.06182519592477222176879684227, 6.47809166738915922944339829252, 7.21142537285468929186876549900, 8.067970422792474361705938569575, 9.724832200891843081922800786014, 10.47906997662161040172955740478, 11.14286191469737448469164666256