L(s) = 1 | + (0.382 + 1.36i)2-s + (−1.70 + 1.04i)4-s − 2.05i·5-s − 4.18i·7-s + (−2.07 − 1.92i)8-s + (2.79 − 0.785i)10-s − 11-s + 3.27·13-s + (5.70 − 1.60i)14-s + (1.83 − 3.55i)16-s + 0.332i·17-s − 8.47i·19-s + (2.13 + 3.50i)20-s + (−0.382 − 1.36i)22-s − 3.52·23-s + ⋯ |
L(s) = 1 | + (0.270 + 0.962i)2-s + (−0.853 + 0.520i)4-s − 0.918i·5-s − 1.58i·7-s + (−0.732 − 0.681i)8-s + (0.884 − 0.248i)10-s − 0.301·11-s + 0.908·13-s + (1.52 − 0.428i)14-s + (0.457 − 0.888i)16-s + 0.0806i·17-s − 1.94i·19-s + (0.478 + 0.784i)20-s + (−0.0815 − 0.290i)22-s − 0.734·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25607 - 0.259687i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25607 - 0.259687i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 - 1.36i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 5 | \( 1 + 2.05iT - 5T^{2} \) |
| 7 | \( 1 + 4.18iT - 7T^{2} \) |
| 13 | \( 1 - 3.27T + 13T^{2} \) |
| 17 | \( 1 - 0.332iT - 17T^{2} \) |
| 19 | \( 1 + 8.47iT - 19T^{2} \) |
| 23 | \( 1 + 3.52T + 23T^{2} \) |
| 29 | \( 1 - 9.52iT - 29T^{2} \) |
| 31 | \( 1 - 3.95iT - 31T^{2} \) |
| 37 | \( 1 + 1.37T + 37T^{2} \) |
| 41 | \( 1 + 5.42iT - 41T^{2} \) |
| 43 | \( 1 - 1.53iT - 43T^{2} \) |
| 47 | \( 1 - 6.93T + 47T^{2} \) |
| 53 | \( 1 + 8.83iT - 53T^{2} \) |
| 59 | \( 1 + 3.70T + 59T^{2} \) |
| 61 | \( 1 - 14.8T + 61T^{2} \) |
| 67 | \( 1 + 6.32iT - 67T^{2} \) |
| 71 | \( 1 + 5.77T + 71T^{2} \) |
| 73 | \( 1 + 8.72T + 73T^{2} \) |
| 79 | \( 1 - 13.2iT - 79T^{2} \) |
| 83 | \( 1 - 0.984T + 83T^{2} \) |
| 89 | \( 1 - 1.46iT - 89T^{2} \) |
| 97 | \( 1 - 5.99T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15790097560729718369442655977, −10.26726716472901759902679923456, −9.038403719142838851045104074052, −8.456384781330463447822761718325, −7.30880442000563854247396679078, −6.69988466345119947933842410845, −5.28838400329463744523290586371, −4.51273456134865882883886316876, −3.50885598590578174310988645262, −0.821147894588993495330444487543,
2.00402129091665141165057498006, 2.97978073604372772667979378369, 4.12137723581635910225304670811, 5.77367236500695092818379237051, 6.04868495890675277940577105990, 7.925093762678555068795812846151, 8.738950789420074186129728018769, 9.803609639227476326457623421102, 10.47963969912118046570300426398, 11.53185583232925167227952263659