Properties

Label 2-396-12.11-c1-0-14
Degree 22
Conductor 396396
Sign 0.918+0.396i0.918 + 0.396i
Analytic cond. 3.162073.16207
Root an. cond. 1.778221.77822
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.382 + 1.36i)2-s + (−1.70 + 1.04i)4-s − 2.05i·5-s − 4.18i·7-s + (−2.07 − 1.92i)8-s + (2.79 − 0.785i)10-s − 11-s + 3.27·13-s + (5.70 − 1.60i)14-s + (1.83 − 3.55i)16-s + 0.332i·17-s − 8.47i·19-s + (2.13 + 3.50i)20-s + (−0.382 − 1.36i)22-s − 3.52·23-s + ⋯
L(s)  = 1  + (0.270 + 0.962i)2-s + (−0.853 + 0.520i)4-s − 0.918i·5-s − 1.58i·7-s + (−0.732 − 0.681i)8-s + (0.884 − 0.248i)10-s − 0.301·11-s + 0.908·13-s + (1.52 − 0.428i)14-s + (0.457 − 0.888i)16-s + 0.0806i·17-s − 1.94i·19-s + (0.478 + 0.784i)20-s + (−0.0815 − 0.290i)22-s − 0.734·23-s + ⋯

Functional equation

Λ(s)=(396s/2ΓC(s)L(s)=((0.918+0.396i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(396s/2ΓC(s+1/2)L(s)=((0.918+0.396i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.918 + 0.396i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 396396    =    2232112^{2} \cdot 3^{2} \cdot 11
Sign: 0.918+0.396i0.918 + 0.396i
Analytic conductor: 3.162073.16207
Root analytic conductor: 1.778221.77822
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ396(287,)\chi_{396} (287, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 396, ( :1/2), 0.918+0.396i)(2,\ 396,\ (\ :1/2),\ 0.918 + 0.396i)

Particular Values

L(1)L(1) \approx 1.256070.259687i1.25607 - 0.259687i
L(12)L(\frac12) \approx 1.256070.259687i1.25607 - 0.259687i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.3821.36i)T 1 + (-0.382 - 1.36i)T
3 1 1
11 1+T 1 + T
good5 1+2.05iT5T2 1 + 2.05iT - 5T^{2}
7 1+4.18iT7T2 1 + 4.18iT - 7T^{2}
13 13.27T+13T2 1 - 3.27T + 13T^{2}
17 10.332iT17T2 1 - 0.332iT - 17T^{2}
19 1+8.47iT19T2 1 + 8.47iT - 19T^{2}
23 1+3.52T+23T2 1 + 3.52T + 23T^{2}
29 19.52iT29T2 1 - 9.52iT - 29T^{2}
31 13.95iT31T2 1 - 3.95iT - 31T^{2}
37 1+1.37T+37T2 1 + 1.37T + 37T^{2}
41 1+5.42iT41T2 1 + 5.42iT - 41T^{2}
43 11.53iT43T2 1 - 1.53iT - 43T^{2}
47 16.93T+47T2 1 - 6.93T + 47T^{2}
53 1+8.83iT53T2 1 + 8.83iT - 53T^{2}
59 1+3.70T+59T2 1 + 3.70T + 59T^{2}
61 114.8T+61T2 1 - 14.8T + 61T^{2}
67 1+6.32iT67T2 1 + 6.32iT - 67T^{2}
71 1+5.77T+71T2 1 + 5.77T + 71T^{2}
73 1+8.72T+73T2 1 + 8.72T + 73T^{2}
79 113.2iT79T2 1 - 13.2iT - 79T^{2}
83 10.984T+83T2 1 - 0.984T + 83T^{2}
89 11.46iT89T2 1 - 1.46iT - 89T^{2}
97 15.99T+97T2 1 - 5.99T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.15790097560729718369442655977, −10.26726716472901759902679923456, −9.038403719142838851045104074052, −8.456384781330463447822761718325, −7.30880442000563854247396679078, −6.69988466345119947933842410845, −5.28838400329463744523290586371, −4.51273456134865882883886316876, −3.50885598590578174310988645262, −0.821147894588993495330444487543, 2.00402129091665141165057498006, 2.97978073604372772667979378369, 4.12137723581635910225304670811, 5.77367236500695092818379237051, 6.04868495890675277940577105990, 7.925093762678555068795812846151, 8.738950789420074186129728018769, 9.803609639227476326457623421102, 10.47963969912118046570300426398, 11.53185583232925167227952263659

Graph of the ZZ-function along the critical line