L(s) = 1 | + (−0.929 − 1.06i)2-s + (−0.272 + 1.98i)4-s − 3.24i·5-s − 1.06i·7-s + (2.36 − 1.55i)8-s + (−3.45 + 3.01i)10-s + 11-s − 0.185·13-s + (−1.13 + 0.985i)14-s + (−3.85 − 1.07i)16-s − 1.21i·17-s − 0.402i·19-s + (6.42 + 0.884i)20-s + (−0.929 − 1.06i)22-s − 8.43·23-s + ⋯ |
L(s) = 1 | + (−0.657 − 0.753i)2-s + (−0.136 + 0.990i)4-s − 1.45i·5-s − 0.400i·7-s + (0.836 − 0.548i)8-s + (−1.09 + 0.953i)10-s + 0.301·11-s − 0.0514·13-s + (−0.302 + 0.263i)14-s + (−0.962 − 0.269i)16-s − 0.294i·17-s − 0.0923i·19-s + (1.43 + 0.197i)20-s + (−0.198 − 0.227i)22-s − 1.75·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.887 + 0.460i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.887 + 0.460i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.189685 - 0.777082i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.189685 - 0.777082i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.929 + 1.06i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 - T \) |
good | 5 | \( 1 + 3.24iT - 5T^{2} \) |
| 7 | \( 1 + 1.06iT - 7T^{2} \) |
| 13 | \( 1 + 0.185T + 13T^{2} \) |
| 17 | \( 1 + 1.21iT - 17T^{2} \) |
| 19 | \( 1 + 0.402iT - 19T^{2} \) |
| 23 | \( 1 + 8.43T + 23T^{2} \) |
| 29 | \( 1 + 7.33iT - 29T^{2} \) |
| 31 | \( 1 + 8.06iT - 31T^{2} \) |
| 37 | \( 1 + 0.871T + 37T^{2} \) |
| 41 | \( 1 + 6.18iT - 41T^{2} \) |
| 43 | \( 1 - 9.72iT - 43T^{2} \) |
| 47 | \( 1 + 4.14T + 47T^{2} \) |
| 53 | \( 1 - 11.7iT - 53T^{2} \) |
| 59 | \( 1 + 10.0T + 59T^{2} \) |
| 61 | \( 1 - 4.64T + 61T^{2} \) |
| 67 | \( 1 + 2.66iT - 67T^{2} \) |
| 71 | \( 1 - 9.80T + 71T^{2} \) |
| 73 | \( 1 - 14.1T + 73T^{2} \) |
| 79 | \( 1 + 13.5iT - 79T^{2} \) |
| 83 | \( 1 - 17.7T + 83T^{2} \) |
| 89 | \( 1 - 15.1iT - 89T^{2} \) |
| 97 | \( 1 - 2.18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90759973936180673486589523473, −9.750228927028808570937841647920, −9.309704985066995631479791163325, −8.216866151254820678598865274057, −7.66209248785769377492378944997, −6.09857040028372302510689411482, −4.64264298609389426526313846924, −3.88839786124687670639656945679, −2.09270257683690935699028806347, −0.65529544868567777771118110202,
2.03478821721680913253810186897, 3.57133310778741382314957027886, 5.21703740929479802338136022387, 6.33758362517378647095157571313, 6.88876810547278730511190813485, 7.913479830766678379650913108792, 8.823081027159327241873810506558, 9.942850435695832112522480957535, 10.52262979014230277668716904932, 11.36708926723157417799422536858