L(s) = 1 | + (−0.929 − 1.06i)2-s + (−0.272 + 1.98i)4-s − 3.24i·5-s − 1.06i·7-s + (2.36 − 1.55i)8-s + (−3.45 + 3.01i)10-s + 11-s − 0.185·13-s + (−1.13 + 0.985i)14-s + (−3.85 − 1.07i)16-s − 1.21i·17-s − 0.402i·19-s + (6.42 + 0.884i)20-s + (−0.929 − 1.06i)22-s − 8.43·23-s + ⋯ |
L(s) = 1 | + (−0.657 − 0.753i)2-s + (−0.136 + 0.990i)4-s − 1.45i·5-s − 0.400i·7-s + (0.836 − 0.548i)8-s + (−1.09 + 0.953i)10-s + 0.301·11-s − 0.0514·13-s + (−0.302 + 0.263i)14-s + (−0.962 − 0.269i)16-s − 0.294i·17-s − 0.0923i·19-s + (1.43 + 0.197i)20-s + (−0.198 − 0.227i)22-s − 1.75·23-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(−0.887+0.460i)Λ(2−s)
Λ(s)=(=(396s/2ΓC(s+1/2)L(s)(−0.887+0.460i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
−0.887+0.460i
|
Analytic conductor: |
3.16207 |
Root analytic conductor: |
1.77822 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :1/2), −0.887+0.460i)
|
Particular Values
L(1) |
≈ |
0.189685−0.777082i |
L(21) |
≈ |
0.189685−0.777082i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.929+1.06i)T |
| 3 | 1 |
| 11 | 1−T |
good | 5 | 1+3.24iT−5T2 |
| 7 | 1+1.06iT−7T2 |
| 13 | 1+0.185T+13T2 |
| 17 | 1+1.21iT−17T2 |
| 19 | 1+0.402iT−19T2 |
| 23 | 1+8.43T+23T2 |
| 29 | 1+7.33iT−29T2 |
| 31 | 1+8.06iT−31T2 |
| 37 | 1+0.871T+37T2 |
| 41 | 1+6.18iT−41T2 |
| 43 | 1−9.72iT−43T2 |
| 47 | 1+4.14T+47T2 |
| 53 | 1−11.7iT−53T2 |
| 59 | 1+10.0T+59T2 |
| 61 | 1−4.64T+61T2 |
| 67 | 1+2.66iT−67T2 |
| 71 | 1−9.80T+71T2 |
| 73 | 1−14.1T+73T2 |
| 79 | 1+13.5iT−79T2 |
| 83 | 1−17.7T+83T2 |
| 89 | 1−15.1iT−89T2 |
| 97 | 1−2.18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90759973936180673486589523473, −9.750228927028808570937841647920, −9.309704985066995631479791163325, −8.216866151254820678598865274057, −7.66209248785769377492378944997, −6.09857040028372302510689411482, −4.64264298609389426526313846924, −3.88839786124687670639656945679, −2.09270257683690935699028806347, −0.65529544868567777771118110202,
2.03478821721680913253810186897, 3.57133310778741382314957027886, 5.21703740929479802338136022387, 6.33758362517378647095157571313, 6.88876810547278730511190813485, 7.913479830766678379650913108792, 8.823081027159327241873810506558, 9.942850435695832112522480957535, 10.52262979014230277668716904932, 11.36708926723157417799422536858