L(s) = 1 | + i·2-s − 4-s − 1.41i·5-s + 1.41·7-s − i·8-s + 1.41·10-s + i·11-s + 1.41i·14-s + 16-s − 1.41·19-s + 1.41i·20-s − 22-s − 1.00·25-s − 1.41·28-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s − 1.41i·5-s + 1.41·7-s − i·8-s + 1.41·10-s + i·11-s + 1.41i·14-s + 16-s − 1.41·19-s + 1.41i·20-s − 22-s − 1.00·25-s − 1.41·28-s + i·32-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.816−0.577i)Λ(1−s)
Λ(s)=(=(396s/2ΓC(s)L(s)(0.816−0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.816−0.577i
|
Analytic conductor: |
0.197629 |
Root analytic conductor: |
0.444555 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(395,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :0), 0.816−0.577i)
|
Particular Values
L(21) |
≈ |
0.8333333196 |
L(21) |
≈ |
0.8333333196 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 11 | 1−iT |
good | 5 | 1+1.41iT−T2 |
| 7 | 1−1.41T+T2 |
| 13 | 1−T2 |
| 17 | 1+T2 |
| 19 | 1+1.41T+T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1+T2 |
| 43 | 1+1.41T+T2 |
| 47 | 1+T2 |
| 53 | 1−1.41iT−T2 |
| 59 | 1+T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1+T2 |
| 73 | 1−T2 |
| 79 | 1+1.41T+T2 |
| 83 | 1−T2 |
| 89 | 1+1.41iT−T2 |
| 97 | 1+2T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.84811778468000534321762618270, −10.53546698480487644901203954389, −9.433538405310197988787395072462, −8.552842018811519360573732951411, −8.087823647879042209377343137560, −7.03174875722134841349653682731, −5.69116736876525591781948201456, −4.72417463360781465426598235763, −4.34634277242828612828933908640, −1.61885775541892759896728718420,
1.93204183660956945955701069077, 3.09401800829321625355083712985, 4.23878676859564224235093214418, 5.46440498461878671844368034694, 6.69381307210043456248616850124, 8.035827601218306045933111181729, 8.607991993189091257825554573210, 9.978029709582538840840246299421, 10.87648308423117055710174489632, 11.12723351507651080270080549041