L(s) = 1 | + i·2-s − 4-s − 1.41i·5-s + 1.41·7-s − i·8-s + 1.41·10-s + i·11-s + 1.41i·14-s + 16-s − 1.41·19-s + 1.41i·20-s − 22-s − 1.00·25-s − 1.41·28-s + i·32-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s − 1.41i·5-s + 1.41·7-s − i·8-s + 1.41·10-s + i·11-s + 1.41i·14-s + 16-s − 1.41·19-s + 1.41i·20-s − 22-s − 1.00·25-s − 1.41·28-s + i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8333333196\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8333333196\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 + 1.41iT - T^{2} \) |
| 7 | \( 1 - 1.41T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 1.41T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + 1.41T + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 1.41T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84811778468000534321762618270, −10.53546698480487644901203954389, −9.433538405310197988787395072462, −8.552842018811519360573732951411, −8.087823647879042209377343137560, −7.03174875722134841349653682731, −5.69116736876525591781948201456, −4.72417463360781465426598235763, −4.34634277242828612828933908640, −1.61885775541892759896728718420,
1.93204183660956945955701069077, 3.09401800829321625355083712985, 4.23878676859564224235093214418, 5.46440498461878671844368034694, 6.69381307210043456248616850124, 8.035827601218306045933111181729, 8.607991993189091257825554573210, 9.978029709582538840840246299421, 10.87648308423117055710174489632, 11.12723351507651080270080549041