L(s) = 1 | + 3-s + (−1 − 1.73i)5-s + 9-s + (−0.5 + 0.866i)11-s + (−1 − 1.73i)15-s + (0.5 + 0.866i)23-s + (−1.49 + 2.59i)25-s + 27-s + (0.5 + 0.866i)31-s + (−0.5 + 0.866i)33-s − 37-s + (−1 − 1.73i)45-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s − 53-s + ⋯ |
L(s) = 1 | + 3-s + (−1 − 1.73i)5-s + 9-s + (−0.5 + 0.866i)11-s + (−1 − 1.73i)15-s + (0.5 + 0.866i)23-s + (−1.49 + 2.59i)25-s + 27-s + (0.5 + 0.866i)31-s + (−0.5 + 0.866i)33-s − 37-s + (−1 − 1.73i)45-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s − 53-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)(0.766+0.642i)Λ(1−s)
Λ(s)=(=(396s/2ΓC(s)L(s)(0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
396
= 22⋅32⋅11
|
Sign: |
0.766+0.642i
|
Analytic conductor: |
0.197629 |
Root analytic conductor: |
0.444555 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ396(241,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 396, ( :0), 0.766+0.642i)
|
Particular Values
L(21) |
≈ |
0.9681479389 |
L(21) |
≈ |
0.9681479389 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 11 | 1+(0.5−0.866i)T |
good | 5 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 13 | 1+(0.5−0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+T+T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+T+T2 |
| 59 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 71 | 1+T+T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+T+T2 |
| 97 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70136177925881820698619439201, −10.28648633137896334484492377742, −9.289551231046621611813501617542, −8.662710115179572720583464653053, −7.86856845139893519475827247187, −7.14993318326154384415023470974, −5.19633272524974394269101909565, −4.48479146806682122089604182101, −3.41370750137473105502287963362, −1.60954385196913242968519716196,
2.61582828989042026853766389212, 3.28180609172253435165309953704, 4.33941602508599612843120622822, 6.20915467728156064500234637887, 7.14068872465359179818039593197, 7.87062351680290350812187551406, 8.632733594795348260989589218504, 9.956175888735277583707366660418, 10.71683966024892544806119382673, 11.37822940010574484609253295582