L(s) = 1 | + 3-s + (−1 − 1.73i)5-s + 9-s + (−0.5 + 0.866i)11-s + (−1 − 1.73i)15-s + (0.5 + 0.866i)23-s + (−1.49 + 2.59i)25-s + 27-s + (0.5 + 0.866i)31-s + (−0.5 + 0.866i)33-s − 37-s + (−1 − 1.73i)45-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s − 53-s + ⋯ |
L(s) = 1 | + 3-s + (−1 − 1.73i)5-s + 9-s + (−0.5 + 0.866i)11-s + (−1 − 1.73i)15-s + (0.5 + 0.866i)23-s + (−1.49 + 2.59i)25-s + 27-s + (0.5 + 0.866i)31-s + (−0.5 + 0.866i)33-s − 37-s + (−1 − 1.73i)45-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s − 53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9681479389\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9681479389\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70136177925881820698619439201, −10.28648633137896334484492377742, −9.289551231046621611813501617542, −8.662710115179572720583464653053, −7.86856845139893519475827247187, −7.14993318326154384415023470974, −5.19633272524974394269101909565, −4.48479146806682122089604182101, −3.41370750137473105502287963362, −1.60954385196913242968519716196,
2.61582828989042026853766389212, 3.28180609172253435165309953704, 4.33941602508599612843120622822, 6.20915467728156064500234637887, 7.14068872465359179818039593197, 7.87062351680290350812187551406, 8.632733594795348260989589218504, 9.956175888735277583707366660418, 10.71683966024892544806119382673, 11.37822940010574484609253295582