L(s) = 1 | + 5-s + 1.29·7-s + 11-s − 5.01·13-s + 3.29·17-s + 5.71·19-s − 5.71·23-s + 25-s + 2·29-s + 3.71·31-s + 1.29·35-s + 2·37-s + 2·41-s − 4.41·43-s + 9.71·47-s − 5.31·49-s + 4.59·53-s + 55-s − 3.71·59-s + 15.1·61-s − 5.01·65-s − 1.40·67-s + 16.0·71-s − 5.89·73-s + 1.29·77-s − 14.0·79-s + 7.52·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.491·7-s + 0.301·11-s − 1.38·13-s + 0.800·17-s + 1.31·19-s − 1.19·23-s + 0.200·25-s + 0.371·29-s + 0.666·31-s + 0.219·35-s + 0.328·37-s + 0.312·41-s − 0.672·43-s + 1.41·47-s − 0.758·49-s + 0.631·53-s + 0.134·55-s − 0.483·59-s + 1.93·61-s − 0.621·65-s − 0.171·67-s + 1.90·71-s − 0.690·73-s + 0.148·77-s − 1.57·79-s + 0.825·83-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.231504334 |
L(21) |
≈ |
2.231504334 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 11 | 1−T |
good | 7 | 1−1.29T+7T2 |
| 13 | 1+5.01T+13T2 |
| 17 | 1−3.29T+17T2 |
| 19 | 1−5.71T+19T2 |
| 23 | 1+5.71T+23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1−3.71T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1−2T+41T2 |
| 43 | 1+4.41T+43T2 |
| 47 | 1−9.71T+47T2 |
| 53 | 1−4.59T+53T2 |
| 59 | 1+3.71T+59T2 |
| 61 | 1−15.1T+61T2 |
| 67 | 1+1.40T+67T2 |
| 71 | 1−16.0T+71T2 |
| 73 | 1+5.89T+73T2 |
| 79 | 1+14.0T+79T2 |
| 83 | 1−7.52T+83T2 |
| 89 | 1−16.5T+89T2 |
| 97 | 1+6.82T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.359562572714099559207118510751, −7.70061909149733815088946027050, −7.11836978528448130776419983453, −6.18491206156468954017834131759, −5.39938245943619282282685189875, −4.83934062230264106406006756947, −3.87685095601942122209303665181, −2.84992029636150203322445866774, −2.01105840795360244733132285099, −0.880197024412158657214608316527,
0.880197024412158657214608316527, 2.01105840795360244733132285099, 2.84992029636150203322445866774, 3.87685095601942122209303665181, 4.83934062230264106406006756947, 5.39938245943619282282685189875, 6.18491206156468954017834131759, 7.11836978528448130776419983453, 7.70061909149733815088946027050, 8.359562572714099559207118510751