L(s) = 1 | + 5-s − 5.12·7-s − 11-s − 3.12·13-s − 3.12·17-s + 4·23-s + 25-s − 2·29-s − 5.12·35-s + 6·37-s − 6·41-s + 5.12·43-s − 4·47-s + 19.2·49-s + 8.24·53-s − 55-s − 4·59-s + 10·61-s − 3.12·65-s − 6.24·67-s + 6.24·71-s + 4.87·73-s + 5.12·77-s + 2.24·79-s − 11.3·83-s − 3.12·85-s + 16.2·89-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.93·7-s − 0.301·11-s − 0.866·13-s − 0.757·17-s + 0.834·23-s + 0.200·25-s − 0.371·29-s − 0.865·35-s + 0.986·37-s − 0.937·41-s + 0.781·43-s − 0.583·47-s + 2.74·49-s + 1.13·53-s − 0.134·55-s − 0.520·59-s + 1.28·61-s − 0.387·65-s − 0.763·67-s + 0.741·71-s + 0.570·73-s + 0.583·77-s + 0.252·79-s − 1.24·83-s − 0.338·85-s + 1.72·89-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.103566316 |
L(21) |
≈ |
1.103566316 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 11 | 1+T |
good | 7 | 1+5.12T+7T2 |
| 13 | 1+3.12T+13T2 |
| 17 | 1+3.12T+17T2 |
| 19 | 1+19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−6T+37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−5.12T+43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1−8.24T+53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1+6.24T+67T2 |
| 71 | 1−6.24T+71T2 |
| 73 | 1−4.87T+73T2 |
| 79 | 1−2.24T+79T2 |
| 83 | 1+11.3T+83T2 |
| 89 | 1−16.2T+89T2 |
| 97 | 1−12.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.681927373356142504717409803471, −7.52444327848299020739194379237, −6.90183151129377935470332399835, −6.33194746375446376072284713970, −5.59790009145838515672466575544, −4.73108754265234899709649356983, −3.71360024776516049312484128673, −2.89622172001196878056084332535, −2.22995185898318267104759345975, −0.56887589256857787452940651825,
0.56887589256857787452940651825, 2.22995185898318267104759345975, 2.89622172001196878056084332535, 3.71360024776516049312484128673, 4.73108754265234899709649356983, 5.59790009145838515672466575544, 6.33194746375446376072284713970, 6.90183151129377935470332399835, 7.52444327848299020739194379237, 8.681927373356142504717409803471