Properties

Label 2-3960-1.1-c1-0-2
Degree $2$
Conductor $3960$
Sign $1$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 5.12·7-s − 11-s − 3.12·13-s − 3.12·17-s + 4·23-s + 25-s − 2·29-s − 5.12·35-s + 6·37-s − 6·41-s + 5.12·43-s − 4·47-s + 19.2·49-s + 8.24·53-s − 55-s − 4·59-s + 10·61-s − 3.12·65-s − 6.24·67-s + 6.24·71-s + 4.87·73-s + 5.12·77-s + 2.24·79-s − 11.3·83-s − 3.12·85-s + 16.2·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.93·7-s − 0.301·11-s − 0.866·13-s − 0.757·17-s + 0.834·23-s + 0.200·25-s − 0.371·29-s − 0.865·35-s + 0.986·37-s − 0.937·41-s + 0.781·43-s − 0.583·47-s + 2.74·49-s + 1.13·53-s − 0.134·55-s − 0.520·59-s + 1.28·61-s − 0.387·65-s − 0.763·67-s + 0.741·71-s + 0.570·73-s + 0.583·77-s + 0.252·79-s − 1.24·83-s − 0.338·85-s + 1.72·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.103566316\)
\(L(\frac12)\) \(\approx\) \(1.103566316\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good7 \( 1 + 5.12T + 7T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 + 3.12T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 5.12T + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 6.24T + 67T^{2} \)
71 \( 1 - 6.24T + 71T^{2} \)
73 \( 1 - 4.87T + 73T^{2} \)
79 \( 1 - 2.24T + 79T^{2} \)
83 \( 1 + 11.3T + 83T^{2} \)
89 \( 1 - 16.2T + 89T^{2} \)
97 \( 1 - 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.681927373356142504717409803471, −7.52444327848299020739194379237, −6.90183151129377935470332399835, −6.33194746375446376072284713970, −5.59790009145838515672466575544, −4.73108754265234899709649356983, −3.71360024776516049312484128673, −2.89622172001196878056084332535, −2.22995185898318267104759345975, −0.56887589256857787452940651825, 0.56887589256857787452940651825, 2.22995185898318267104759345975, 2.89622172001196878056084332535, 3.71360024776516049312484128673, 4.73108754265234899709649356983, 5.59790009145838515672466575544, 6.33194746375446376072284713970, 6.90183151129377935470332399835, 7.52444327848299020739194379237, 8.681927373356142504717409803471

Graph of the $Z$-function along the critical line