L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (1.69 − 0.550i)7-s + (0.309 − 0.951i)8-s − i·10-s + (0.453 − 0.891i)11-s + (−1.16 + 1.59i)13-s + (−1.69 − 0.550i)14-s + (−0.809 + 0.587i)16-s + (1.53 + 0.5i)19-s + (−0.587 + 0.809i)20-s + (−0.891 + 0.453i)22-s + 0.618i·23-s + (−0.309 + 0.951i)25-s + (1.87 − 0.610i)26-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)4-s + (0.587 + 0.809i)5-s + (1.69 − 0.550i)7-s + (0.309 − 0.951i)8-s − i·10-s + (0.453 − 0.891i)11-s + (−1.16 + 1.59i)13-s + (−1.69 − 0.550i)14-s + (−0.809 + 0.587i)16-s + (1.53 + 0.5i)19-s + (−0.587 + 0.809i)20-s + (−0.891 + 0.453i)22-s + 0.618i·23-s + (−0.309 + 0.951i)25-s + (1.87 − 0.610i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.994−0.100i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.994−0.100i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.994−0.100i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(2339,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), 0.994−0.100i)
|
Particular Values
L(21) |
≈ |
1.222487213 |
L(21) |
≈ |
1.222487213 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.809+0.587i)T |
| 3 | 1 |
| 5 | 1+(−0.587−0.809i)T |
| 11 | 1+(−0.453+0.891i)T |
good | 7 | 1+(−1.69+0.550i)T+(0.809−0.587i)T2 |
| 13 | 1+(1.16−1.59i)T+(−0.309−0.951i)T2 |
| 17 | 1+(−0.309+0.951i)T2 |
| 19 | 1+(−1.53−0.5i)T+(0.809+0.587i)T2 |
| 23 | 1−0.618iT−T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(0.0966+0.297i)T+(−0.809+0.587i)T2 |
| 41 | 1+(−0.280+0.863i)T+(−0.809−0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(1.11+0.363i)T+(0.809+0.587i)T2 |
| 53 | 1+(1.11−1.53i)T+(−0.309−0.951i)T2 |
| 59 | 1+(0.297−0.0966i)T+(0.809−0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.309−0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(0.309+0.951i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1+0.907iT−T2 |
| 97 | 1+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.801543038162235391987793566959, −7.81230172566757876954732463283, −7.39922059789527228806785959730, −6.78298247097957042208455760970, −5.71442821493193925798521400871, −4.75274685756813699226335606337, −3.90688002200632238424936566068, −2.99788156304597302182762857272, −1.91094678613372930944682346103, −1.39260354073603368444943570862,
1.03740206028114100616904381345, 1.87316727869945115540589327442, 2.74505319230986485198041354632, 4.68283745086015150727326450860, 5.03013896388662230735974985692, 5.46240523058045060012687780719, 6.48318354553104386425696098815, 7.49193627508750425941811139937, 7.953666272693591846515477156526, 8.450656966905142275105647565388