L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.951 + 0.309i)5-s + (−1.16 − 1.59i)7-s + (−0.809 − 0.587i)8-s + 0.999i·10-s + (−0.156 + 0.987i)11-s + (0.863 − 0.280i)13-s + (1.16 − 1.59i)14-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)19-s + (−0.951 + 0.309i)20-s + (−0.987 + 0.156i)22-s + 1.61i·23-s + (0.809 + 0.587i)25-s + (0.533 + 0.734i)26-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (0.951 + 0.309i)5-s + (−1.16 − 1.59i)7-s + (−0.809 − 0.587i)8-s + 0.999i·10-s + (−0.156 + 0.987i)11-s + (0.863 − 0.280i)13-s + (1.16 − 1.59i)14-s + (0.309 − 0.951i)16-s + (0.363 − 0.5i)19-s + (−0.951 + 0.309i)20-s + (−0.987 + 0.156i)22-s + 1.61i·23-s + (0.809 + 0.587i)25-s + (0.533 + 0.734i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.422−0.906i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.422−0.906i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.422−0.906i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3779,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), 0.422−0.906i)
|
Particular Values
L(21) |
≈ |
1.481799063 |
L(21) |
≈ |
1.481799063 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.309−0.951i)T |
| 3 | 1 |
| 5 | 1+(−0.951−0.309i)T |
| 11 | 1+(0.156−0.987i)T |
good | 7 | 1+(1.16+1.59i)T+(−0.309+0.951i)T2 |
| 13 | 1+(−0.863+0.280i)T+(0.809−0.587i)T2 |
| 17 | 1+(0.809+0.587i)T2 |
| 19 | 1+(−0.363+0.5i)T+(−0.309−0.951i)T2 |
| 23 | 1−1.61iT−T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 31 | 1+(0.809−0.587i)T2 |
| 37 | 1+(−1.44+1.04i)T+(0.309−0.951i)T2 |
| 41 | 1+(−0.253−0.183i)T+(0.309+0.951i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−1.11+1.53i)T+(−0.309−0.951i)T2 |
| 53 | 1+(−1.11+0.363i)T+(0.809−0.587i)T2 |
| 59 | 1+(−1.04−1.44i)T+(−0.309+0.951i)T2 |
| 61 | 1+(−0.809−0.587i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.809−0.587i)T2 |
| 73 | 1+(0.309−0.951i)T2 |
| 79 | 1+(−0.809+0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+0.312iT−T2 |
| 97 | 1+(0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.828339766243672067784300892253, −7.52973112452388742617903196878, −7.30333206183258453680634021742, −6.63148328503522691658231682721, −5.90917716695953143924542274681, −5.25623953817212222934631272855, −4.11705539995037436833043978138, −3.65365548105367691424483610897, −2.64522871970484653334397824677, −1.02397938545570086339597966092,
1.01855643797560794593288604239, 2.35030793761958260666208541378, 2.76661879373709806735809045412, 3.66057438486672440453985772199, 4.75169852463133925319726706989, 5.69802617454890655040955431756, 6.00916308767809429198804498962, 6.52688327775229899459714285694, 8.361599873605852928913109014502, 8.638992913954445298202071406176