L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.951 − 0.309i)5-s + (−0.183 − 0.253i)7-s + (−0.809 − 0.587i)8-s − 0.999i·10-s + (0.987 + 0.156i)11-s + (−1.69 + 0.550i)13-s + (0.183 − 0.253i)14-s + (0.309 − 0.951i)16-s + (−0.363 + 0.5i)19-s + (0.951 − 0.309i)20-s + (0.156 + 0.987i)22-s − 1.61i·23-s + (0.809 + 0.587i)25-s + (−1.04 − 1.44i)26-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.951 − 0.309i)5-s + (−0.183 − 0.253i)7-s + (−0.809 − 0.587i)8-s − 0.999i·10-s + (0.987 + 0.156i)11-s + (−1.69 + 0.550i)13-s + (0.183 − 0.253i)14-s + (0.309 − 0.951i)16-s + (−0.363 + 0.5i)19-s + (0.951 − 0.309i)20-s + (0.156 + 0.987i)22-s − 1.61i·23-s + (0.809 + 0.587i)25-s + (−1.04 − 1.44i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.906+0.422i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.906+0.422i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.906+0.422i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3779,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), 0.906+0.422i)
|
Particular Values
L(21) |
≈ |
0.6912506036 |
L(21) |
≈ |
0.6912506036 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.309−0.951i)T |
| 3 | 1 |
| 5 | 1+(0.951+0.309i)T |
| 11 | 1+(−0.987−0.156i)T |
good | 7 | 1+(0.183+0.253i)T+(−0.309+0.951i)T2 |
| 13 | 1+(1.69−0.550i)T+(0.809−0.587i)T2 |
| 17 | 1+(0.809+0.587i)T2 |
| 19 | 1+(0.363−0.5i)T+(−0.309−0.951i)T2 |
| 23 | 1+1.61iT−T2 |
| 29 | 1+(−0.309+0.951i)T2 |
| 31 | 1+(0.809−0.587i)T2 |
| 37 | 1+(−0.734+0.533i)T+(0.309−0.951i)T2 |
| 41 | 1+(1.59+1.16i)T+(0.309+0.951i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−1.11+1.53i)T+(−0.309−0.951i)T2 |
| 53 | 1+(−1.11+0.363i)T+(0.809−0.587i)T2 |
| 59 | 1+(0.533+0.734i)T+(−0.309+0.951i)T2 |
| 61 | 1+(−0.809−0.587i)T2 |
| 67 | 1−T2 |
| 71 | 1+(−0.809−0.587i)T2 |
| 73 | 1+(0.309−0.951i)T2 |
| 79 | 1+(−0.809+0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+1.97iT−T2 |
| 97 | 1+(0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.555221430967833891226206552787, −7.70744705493643018121631340916, −6.92256955615487964255563942485, −6.77496352184355833491013535459, −5.56200474417411809437939569882, −4.73523336662415282796589926153, −4.18463209746546954438641750333, −3.54716606456850685437782663586, −2.26106392409611313642146388499, −0.38944782631777374307839999932,
1.19461142653265045354560645438, 2.56653201128035107726089009610, 3.12969268690269905203591080046, 4.04786849237894158086851065134, 4.68412916565345552088149929481, 5.51256337533275786362725426817, 6.43494707204278847466191842170, 7.31147094890603645384477614367, 7.974098848952819058176474405445, 8.888808749503127841960944785187