L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.951 − 0.309i)5-s + (−0.183 − 0.253i)7-s + (−0.809 − 0.587i)8-s − 0.999i·10-s + (0.987 + 0.156i)11-s + (−1.69 + 0.550i)13-s + (0.183 − 0.253i)14-s + (0.309 − 0.951i)16-s + (−0.363 + 0.5i)19-s + (0.951 − 0.309i)20-s + (0.156 + 0.987i)22-s − 1.61i·23-s + (0.809 + 0.587i)25-s + (−1.04 − 1.44i)26-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.809 + 0.587i)4-s + (−0.951 − 0.309i)5-s + (−0.183 − 0.253i)7-s + (−0.809 − 0.587i)8-s − 0.999i·10-s + (0.987 + 0.156i)11-s + (−1.69 + 0.550i)13-s + (0.183 − 0.253i)14-s + (0.309 − 0.951i)16-s + (−0.363 + 0.5i)19-s + (0.951 − 0.309i)20-s + (0.156 + 0.987i)22-s − 1.61i·23-s + (0.809 + 0.587i)25-s + (−1.04 − 1.44i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.906 + 0.422i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.906 + 0.422i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6912506036\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6912506036\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.951 + 0.309i)T \) |
| 11 | \( 1 + (-0.987 - 0.156i)T \) |
good | 7 | \( 1 + (0.183 + 0.253i)T + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (1.69 - 0.550i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 19 | \( 1 + (0.363 - 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + 1.61iT - T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.734 + 0.533i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (1.59 + 1.16i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-1.11 + 1.53i)T + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-1.11 + 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.533 + 0.734i)T + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + 1.97iT - T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.555221430967833891226206552787, −7.70744705493643018121631340916, −6.92256955615487964255563942485, −6.77496352184355833491013535459, −5.56200474417411809437939569882, −4.73523336662415282796589926153, −4.18463209746546954438641750333, −3.54716606456850685437782663586, −2.26106392409611313642146388499, −0.38944782631777374307839999932,
1.19461142653265045354560645438, 2.56653201128035107726089009610, 3.12969268690269905203591080046, 4.04786849237894158086851065134, 4.68412916565345552088149929481, 5.51256337533275786362725426817, 6.43494707204278847466191842170, 7.31147094890603645384477614367, 7.974098848952819058176474405445, 8.888808749503127841960944785187