L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.587 + 0.809i)5-s + (0.863 + 0.280i)7-s + (0.309 + 0.951i)8-s − i·10-s + (−0.891 + 0.453i)11-s + (0.183 + 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (0.587 + 0.809i)20-s + (0.453 − 0.891i)22-s + 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.587 + 0.809i)5-s + (0.863 + 0.280i)7-s + (0.309 + 0.951i)8-s − i·10-s + (−0.891 + 0.453i)11-s + (0.183 + 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (0.587 + 0.809i)20-s + (0.453 − 0.891i)22-s + 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.971+0.237i)Λ(1−s)
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.971+0.237i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
−0.971+0.237i
|
Analytic conductor: |
1.97629 |
Root analytic conductor: |
1.40580 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(899,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :0), −0.971+0.237i)
|
Particular Values
L(21) |
≈ |
0.3712926397 |
L(21) |
≈ |
0.3712926397 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.809−0.587i)T |
| 3 | 1 |
| 5 | 1+(0.587−0.809i)T |
| 11 | 1+(0.891−0.453i)T |
good | 7 | 1+(−0.863−0.280i)T+(0.809+0.587i)T2 |
| 13 | 1+(−0.183−0.253i)T+(−0.309+0.951i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(1.53−0.5i)T+(0.809−0.587i)T2 |
| 23 | 1−0.618iT−T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(−0.309+0.951i)T2 |
| 37 | 1+(0.610−1.87i)T+(−0.809−0.587i)T2 |
| 41 | 1+(0.550+1.69i)T+(−0.809+0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(1.11−0.363i)T+(0.809−0.587i)T2 |
| 53 | 1+(1.11+1.53i)T+(−0.309+0.951i)T2 |
| 59 | 1+(−1.87−0.610i)T+(0.809+0.587i)T2 |
| 61 | 1+(0.309+0.951i)T2 |
| 67 | 1−T2 |
| 71 | 1+(0.309+0.951i)T2 |
| 73 | 1+(−0.809−0.587i)T2 |
| 79 | 1+(0.309−0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1−1.78iT−T2 |
| 97 | 1+(−0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.650277075244991103433620553938, −8.263589857993992729027415109467, −7.72236390380761359128077773926, −6.88073483473396228661452871007, −6.40124269912689244484751120785, −5.35276453864687251337546242183, −4.74941231200308901410500295976, −3.67490702971968865524518876007, −2.42334180348627203894414741129, −1.71197993070622115989033890852,
0.26608817294915183836396236816, 1.49209345724541155130990750778, 2.47245181847088858780680448081, 3.52235878041276586429651351530, 4.40967626322896518115729220550, 4.95827560948643021991197545419, 6.10183693680003036126135862324, 7.10982091233073922205043550599, 7.85380603405360469009779961191, 8.372284000878403811603279691379