L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.587 + 0.809i)5-s + (0.863 + 0.280i)7-s + (0.309 + 0.951i)8-s − i·10-s + (−0.891 + 0.453i)11-s + (0.183 + 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (0.587 + 0.809i)20-s + (0.453 − 0.891i)22-s + 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.587 + 0.809i)5-s + (0.863 + 0.280i)7-s + (0.309 + 0.951i)8-s − i·10-s + (−0.891 + 0.453i)11-s + (0.183 + 0.253i)13-s + (−0.863 + 0.280i)14-s + (−0.809 − 0.587i)16-s + (−1.53 + 0.5i)19-s + (0.587 + 0.809i)20-s + (0.453 − 0.891i)22-s + 0.618i·23-s + (−0.309 − 0.951i)25-s + (−0.297 − 0.0966i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 + 0.237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3712926397\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3712926397\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.587 - 0.809i)T \) |
| 11 | \( 1 + (0.891 - 0.453i)T \) |
good | 7 | \( 1 + (-0.863 - 0.280i)T + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.183 - 0.253i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (1.53 - 0.5i)T + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 0.618iT - T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.610 - 1.87i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.550 + 1.69i)T + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (1.11 - 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-1.87 - 0.610i)T + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - 1.78iT - T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.650277075244991103433620553938, −8.263589857993992729027415109467, −7.72236390380761359128077773926, −6.88073483473396228661452871007, −6.40124269912689244484751120785, −5.35276453864687251337546242183, −4.74941231200308901410500295976, −3.67490702971968865524518876007, −2.42334180348627203894414741129, −1.71197993070622115989033890852,
0.26608817294915183836396236816, 1.49209345724541155130990750778, 2.47245181847088858780680448081, 3.52235878041276586429651351530, 4.40967626322896518115729220550, 4.95827560948643021991197545419, 6.10183693680003036126135862324, 7.10982091233073922205043550599, 7.85380603405360469009779961191, 8.372284000878403811603279691379