L(s) = 1 | − i·2-s − 4-s + i·5-s − 2·7-s + i·8-s + 10-s − i·11-s + 2i·14-s + 16-s − i·20-s − 22-s − 25-s + 2·28-s + 2·31-s − i·32-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + i·5-s − 2·7-s + i·8-s + 10-s − i·11-s + 2i·14-s + 16-s − i·20-s − 22-s − 25-s + 2·28-s + 2·31-s − i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7367839656\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7367839656\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 11 | \( 1 + iT \) |
good | 7 | \( 1 + 2T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + 2iT - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 2T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + 2iT - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.635439420297348243659689296025, −7.86335525327547243594087859369, −6.76507104220192588980680516194, −6.28366043460594445186935420235, −5.58971411688820460309784520000, −4.32884756750620426229543927381, −3.30862581511211526808665064607, −3.19602483629408867223959706149, −2.27462517979186196670706891729, −0.56218169268051479198333510255,
0.899719447387035424950288718152, 2.60682931451682078377866780442, 3.71259277831989607516191508865, 4.37328754425237463248456331961, 5.18832742479788427609666569673, 6.02359901027962498270680217781, 6.58207218974627329522711917673, 7.23033937902870630758178903027, 8.069197698724880143985706539150, 8.812982482223015601622394317940