L(s) = 1 | + 2.09·2-s − 3-s + 2.36·4-s + 0.388·5-s − 2.09·6-s + 7-s + 0.771·8-s + 9-s + 0.811·10-s + 6.41·11-s − 2.36·12-s + 3.88·13-s + 2.09·14-s − 0.388·15-s − 3.12·16-s − 4.98·17-s + 2.09·18-s − 19-s + 0.919·20-s − 21-s + 13.4·22-s + 3.44·23-s − 0.771·24-s − 4.84·25-s + 8.12·26-s − 27-s + 2.36·28-s + ⋯ |
L(s) = 1 | + 1.47·2-s − 0.577·3-s + 1.18·4-s + 0.173·5-s − 0.853·6-s + 0.377·7-s + 0.272·8-s + 0.333·9-s + 0.256·10-s + 1.93·11-s − 0.683·12-s + 1.07·13-s + 0.558·14-s − 0.100·15-s − 0.781·16-s − 1.20·17-s + 0.492·18-s − 0.229·19-s + 0.205·20-s − 0.218·21-s + 2.86·22-s + 0.717·23-s − 0.157·24-s − 0.969·25-s + 1.59·26-s − 0.192·27-s + 0.447·28-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(399s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.682986877 |
L(21) |
≈ |
2.682986877 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 7 | 1−T |
| 19 | 1+T |
good | 2 | 1−2.09T+2T2 |
| 5 | 1−0.388T+5T2 |
| 11 | 1−6.41T+11T2 |
| 13 | 1−3.88T+13T2 |
| 17 | 1+4.98T+17T2 |
| 23 | 1−3.44T+23T2 |
| 29 | 1−0.169T+29T2 |
| 31 | 1+8.62T+31T2 |
| 37 | 1−7.37T+37T2 |
| 41 | 1+8.77T+41T2 |
| 43 | 1+9.11T+43T2 |
| 47 | 1+4.80T+47T2 |
| 53 | 1−8.42T+53T2 |
| 59 | 1−2.97T+59T2 |
| 61 | 1−5.82T+61T2 |
| 67 | 1+14.9T+67T2 |
| 71 | 1−4.24T+71T2 |
| 73 | 1−13.5T+73T2 |
| 79 | 1+1.01T+79T2 |
| 83 | 1+4.32T+83T2 |
| 89 | 1−13.8T+89T2 |
| 97 | 1+13.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47685096821963154885527199474, −10.97232803514642848210651427701, −9.443386790050601825531005598223, −8.609016414617399720980204643918, −6.86071787260097522949000571741, −6.37544928927090577062163417151, −5.41264417966402576008142593713, −4.30434887053437066504023806442, −3.63340731583608311598654472987, −1.75514685784801947870251495642,
1.75514685784801947870251495642, 3.63340731583608311598654472987, 4.30434887053437066504023806442, 5.41264417966402576008142593713, 6.37544928927090577062163417151, 6.86071787260097522949000571741, 8.609016414617399720980204643918, 9.443386790050601825531005598223, 10.97232803514642848210651427701, 11.47685096821963154885527199474