L(s) = 1 | + 1.39·2-s + 3-s − 0.0513·4-s + 3.05·5-s + 1.39·6-s − 7-s − 2.86·8-s + 9-s + 4.25·10-s + 5.31·11-s − 0.0513·12-s − 3.31·13-s − 1.39·14-s + 3.05·15-s − 3.89·16-s + 0.948·17-s + 1.39·18-s − 19-s − 0.156·20-s − 21-s + 7.41·22-s + 1.31·23-s − 2.86·24-s + 4.31·25-s − 4.62·26-s + 27-s + 0.0513·28-s + ⋯ |
L(s) = 1 | + 0.987·2-s + 0.577·3-s − 0.0256·4-s + 1.36·5-s + 0.569·6-s − 0.377·7-s − 1.01·8-s + 0.333·9-s + 1.34·10-s + 1.60·11-s − 0.0148·12-s − 0.918·13-s − 0.373·14-s + 0.787·15-s − 0.973·16-s + 0.230·17-s + 0.329·18-s − 0.229·19-s − 0.0350·20-s − 0.218·21-s + 1.58·22-s + 0.273·23-s − 0.584·24-s + 0.862·25-s − 0.906·26-s + 0.192·27-s + 0.00970·28-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(399s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.761506607 |
L(21) |
≈ |
2.761506607 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1+T |
| 19 | 1+T |
good | 2 | 1−1.39T+2T2 |
| 5 | 1−3.05T+5T2 |
| 11 | 1−5.31T+11T2 |
| 13 | 1+3.31T+13T2 |
| 17 | 1−0.948T+17T2 |
| 23 | 1−1.31T+23T2 |
| 29 | 1+7.84T+29T2 |
| 31 | 1+4.79T+31T2 |
| 37 | 1+8.62T+37T2 |
| 41 | 1−11.3T+41T2 |
| 43 | 1−3.20T+43T2 |
| 47 | 1+5.84T+47T2 |
| 53 | 1+2.77T+53T2 |
| 59 | 1+8.20T+59T2 |
| 61 | 1−12.6T+61T2 |
| 67 | 1+4.51T+67T2 |
| 71 | 1+13.5T+71T2 |
| 73 | 1+4.10T+73T2 |
| 79 | 1+8.20T+79T2 |
| 83 | 1+6.36T+83T2 |
| 89 | 1−15.5T+89T2 |
| 97 | 1−11.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.53824443193448835165892721793, −10.13747278087485160967299857856, −9.234744011646566970448844250378, −9.057157262933332291332071696904, −7.26177513710809638175320118686, −6.26386634874263879136623074131, −5.48811314175446666034803490128, −4.28894803860738802833264060397, −3.24014193388489653431117946010, −1.92556801346990797493138724393,
1.92556801346990797493138724393, 3.24014193388489653431117946010, 4.28894803860738802833264060397, 5.48811314175446666034803490128, 6.26386634874263879136623074131, 7.26177513710809638175320118686, 9.057157262933332291332071696904, 9.234744011646566970448844250378, 10.13747278087485160967299857856, 11.53824443193448835165892721793