L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s − 19-s + (0.5 − 0.866i)21-s + (0.939 − 0.342i)25-s + (0.500 + 0.866i)27-s + (−0.173 − 0.984i)28-s + 1.53·31-s + (0.939 + 0.342i)36-s + (1.70 + 0.984i)37-s + ⋯ |
L(s) = 1 | + (−0.766 + 0.642i)3-s + (−0.173 + 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s − 19-s + (0.5 − 0.866i)21-s + (0.939 − 0.342i)25-s + (0.500 + 0.866i)27-s + (−0.173 − 0.984i)28-s + 1.53·31-s + (0.939 + 0.342i)36-s + (1.70 + 0.984i)37-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.585−0.810i)Λ(1−s)
Λ(s)=(=(399s/2ΓC(s)L(s)(−0.585−0.810i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
−0.585−0.810i
|
Analytic conductor: |
0.199126 |
Root analytic conductor: |
0.446236 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(110,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :0), −0.585−0.810i)
|
Particular Values
L(21) |
≈ |
0.5098247257 |
L(21) |
≈ |
0.5098247257 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.766−0.642i)T |
| 7 | 1+(0.939−0.342i)T |
| 19 | 1+T |
good | 2 | 1+(0.173−0.984i)T2 |
| 5 | 1+(−0.939+0.342i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
| 17 | 1+(−0.939+0.342i)T2 |
| 23 | 1+(−0.766+0.642i)T2 |
| 29 | 1+(0.766−0.642i)T2 |
| 31 | 1−1.53T+T2 |
| 37 | 1+(−1.70−0.984i)T+(0.5+0.866i)T2 |
| 41 | 1+(0.939−0.342i)T2 |
| 43 | 1+(0.266−0.223i)T+(0.173−0.984i)T2 |
| 47 | 1+(−0.939−0.342i)T2 |
| 53 | 1+(−0.939−0.342i)T2 |
| 59 | 1+(0.939−0.342i)T2 |
| 61 | 1+(0.439+1.20i)T+(−0.766+0.642i)T2 |
| 67 | 1+(−0.439+0.524i)T+(−0.173−0.984i)T2 |
| 71 | 1+(0.173−0.984i)T2 |
| 73 | 1+(−0.439−0.524i)T+(−0.173+0.984i)T2 |
| 79 | 1+(0.439−1.20i)T+(−0.766−0.642i)T2 |
| 83 | 1+(−0.5−0.866i)T2 |
| 89 | 1+(−0.173−0.984i)T2 |
| 97 | 1+(0.939+0.342i)T+(0.766+0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.86659116262260369093287250517, −11.08132644281398497784701044627, −9.841972604950179721925688965407, −9.241813082284408764596729718613, −8.325782184886548084124497698111, −6.75857442434159908319389917089, −6.40642193289514643874027728686, −4.73715340245241738788994312315, −4.05368792781209756199380944555, −2.73316157442354504973908410888,
0.78169091650337380349031349174, 2.68684156072379915195060162685, 4.52557202555545190941733793829, 5.62912528322123446992134405007, 6.27230168895615760336101874052, 7.21763010389751902209129431214, 8.335241189732926326185990298982, 9.663981819894624684256573503254, 10.45387672179324208923031345690, 10.89519750699449590781682960237