L(s) = 1 | + (0.766 − 0.642i)3-s + (0.173 − 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s + 19-s + (−0.5 + 0.866i)21-s + (−0.939 + 0.342i)25-s + (−0.500 − 0.866i)27-s + (0.173 + 0.984i)28-s + 1.53·31-s + (−0.939 − 0.342i)36-s + (−0.173 + 0.300i)37-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (0.173 − 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s + 19-s + (−0.5 + 0.866i)21-s + (−0.939 + 0.342i)25-s + (−0.500 − 0.866i)27-s + (0.173 + 0.984i)28-s + 1.53·31-s + (−0.939 − 0.342i)36-s + (−0.173 + 0.300i)37-s + ⋯ |
Λ(s)=(=(399s/2ΓC(s)L(s)(0.520+0.853i)Λ(1−s)
Λ(s)=(=(399s/2ΓC(s)L(s)(0.520+0.853i)Λ(1−s)
Degree: |
2 |
Conductor: |
399
= 3⋅7⋅19
|
Sign: |
0.520+0.853i
|
Analytic conductor: |
0.199126 |
Root analytic conductor: |
0.446236 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ399(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 399, ( :0), 0.520+0.853i)
|
Particular Values
L(21) |
≈ |
0.9869405002 |
L(21) |
≈ |
0.9869405002 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.766+0.642i)T |
| 7 | 1+(0.939−0.342i)T |
| 19 | 1−T |
good | 2 | 1+(−0.173+0.984i)T2 |
| 5 | 1+(0.939−0.342i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
| 17 | 1+(0.939−0.342i)T2 |
| 23 | 1+(−0.766+0.642i)T2 |
| 29 | 1+(−0.766+0.642i)T2 |
| 31 | 1−1.53T+T2 |
| 37 | 1+(0.173−0.300i)T+(−0.5−0.866i)T2 |
| 41 | 1+(0.939−0.342i)T2 |
| 43 | 1+(−0.266+0.223i)T+(0.173−0.984i)T2 |
| 47 | 1+(0.939+0.342i)T2 |
| 53 | 1+(0.939+0.342i)T2 |
| 59 | 1+(0.939−0.342i)T2 |
| 61 | 1+(1.43−0.524i)T+(0.766−0.642i)T2 |
| 67 | 1+(1.43+1.20i)T+(0.173+0.984i)T2 |
| 71 | 1+(−0.173+0.984i)T2 |
| 73 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 79 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+(−0.173−0.984i)T2 |
| 97 | 1+(−0.939−0.342i)T+(0.766+0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65388835762136306718911184171, −10.12987523294358463741241551597, −9.458016324814222809280850053292, −8.886051982436442589450755766709, −7.43006042782346275320645098811, −6.64534322423708791502132155287, −5.89547803296341407635996151920, −4.37169294928854792689804819873, −2.89481171159268113789158899770, −1.67771027132164204761216497882,
2.79526511166598956516704248833, 3.34196033006767641010958111520, 4.50483999946554104953652627800, 5.90412972929902471020237332142, 7.37758711517238289398116608597, 7.890344405000500757148095969704, 8.876756224890577258972414370848, 9.908526811813382892051806690837, 10.44200408481461468316023274337, 11.70913578814595025935479561324