L(s) = 1 | + (0.766 − 0.642i)3-s + (0.173 − 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s + 19-s + (−0.5 + 0.866i)21-s + (−0.939 + 0.342i)25-s + (−0.500 − 0.866i)27-s + (0.173 + 0.984i)28-s + 1.53·31-s + (−0.939 − 0.342i)36-s + (−0.173 + 0.300i)37-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (0.173 − 0.984i)4-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 − 0.866i)12-s + (−0.326 + 1.85i)13-s + (−0.939 − 0.342i)16-s + 19-s + (−0.5 + 0.866i)21-s + (−0.939 + 0.342i)25-s + (−0.500 − 0.866i)27-s + (0.173 + 0.984i)28-s + 1.53·31-s + (−0.939 − 0.342i)36-s + (−0.173 + 0.300i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.520 + 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.520 + 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9869405002\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9869405002\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.939 - 0.342i)T \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 5 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 - 1.53T + T^{2} \) |
| 37 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (1.43 - 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65388835762136306718911184171, −10.12987523294358463741241551597, −9.458016324814222809280850053292, −8.886051982436442589450755766709, −7.43006042782346275320645098811, −6.64534322423708791502132155287, −5.89547803296341407635996151920, −4.37169294928854792689804819873, −2.89481171159268113789158899770, −1.67771027132164204761216497882,
2.79526511166598956516704248833, 3.34196033006767641010958111520, 4.50483999946554104953652627800, 5.90412972929902471020237332142, 7.37758711517238289398116608597, 7.890344405000500757148095969704, 8.876756224890577258972414370848, 9.908526811813382892051806690837, 10.44200408481461468316023274337, 11.70913578814595025935479561324